Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Свойства неопределенного интеграла.
Из определений первообразной F (x) неопределенного интеграла от данной функции f (x) на некотором промежутке следуют свойства неопределенного интеграла: 1. . 2. . 3. , где С – произвольная постоянная. 4. , где k = const. 5.
Замечание. Все вышеперечисленные свойства верны при условии. Что интегралы, фигурирующие в них, рассматриваются на одном и том же промежутке и существуют.
Таблица основных неопределенных интегралов. Действие интегрирования является обратным действию дифференцирования, то есть по заданной производной f (x) надо восстановить начальную функцию F (x). Тогда из определения 2 и таблицы производных получается таблица основных интегралов. 1. . 2. . 3. . 4. . 5. . 6. . 7. . 8. . 9. . 10. . 11. . 12. . 13. . 14. . 15. . 16. . В формулах 1-16 С – произвольная постоянная. Замечание. Интеграл не от любой элементарной функции является элементарной функцией. Параметрами могут служить следующие интегралы, часто встречающиеся в задачах: - интеграл Пуассона, - интеграл Френеля, - интегральный логарифм, - интегральный косинус и синус. Указанные функции существуют, имеют важное прикладное значение. Для них составлены таблицы значений.
|