Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Резонанс в последовательной цепи (резонанс напряжений)
Под резонансом в электрической цепи понимают такое ее состояние, когда ток и напряжение совпадают по фазе и вся цепь ведет себя как чисто активная (рис. 1.18). Рис. 1.18. Резонансная цепь (а) и векторная диаграмма при резонансе (б) (из определения резонанса); . В момент резонанса происходит обмен энергии между L и C. Из сети реактивная мощность не потребляется и в сеть не отдается, следовательно, цепь ведет себя как чисто активная. 35. Резонанс токов возникает в цепях переменного тока состоящих из источника колебаний и параллельного колебательного контура. Резонанс тока это увеличение тока проходящего через элементы контура при этом увеличение потребление тока от источника не происходит. Рисунок 1 — параллельный колебательный контур
Для возникновения резонанса токов необходимо чтобы реактивные сопротивления емкости и индуктивности контура были равны. А также частота собственных колебаний контура была равна частоте колебаний источника тока. Во время наступления резонанса токов или так называемого параллельного резонанса напряжение на элементах контура остается неизменным и равным напряжению, которое создает источник. Поскольку он подключен параллельно контуру. Потребление тока от источника будет минимально, так как сопротивление контура при наступлении резонанса резко увеличится. Рисунок 2 — зависимость полного сопротивления контура и тока от частоты
Сопротивление колебательного контура относительно источника колебаний будет иметь чисто активный характер. То есть не будет, провялятся ни емкостная, ни индуктивная составляющая. И сдвиг фаз между током и напряжением будет отсутствовать. В тоже время ток через индуктивность будет отставать от напряжения на 90 градусов. А ток в емкости буде опережать напряжение на те же 90 градусов. Таким образом, токи в реактивных элементах контура будут сдвинуты по фазе на 180 градусов друг относительно друга. В итоге получается, что в параллельном колебательном контуре протекают реактивные токи достаточно большой величины, но при этом он от источника напряжения потребляет малый ток необходимый лишь для компенсации потерь в контуре. Эти потери обусловлены наличием активного сопротивления сосредоточенного по большей части в индуктивности. Источник затрачивает энергию при включении, заряжая емкость. Далее энергия, накопленная в электрическом поле конденсатора, переходит в энергию магнитного поля индуктивности. Индуктивность возвращает энергию емкости, и процесс повторяется снова. Источник напряжения лишь должен компенсировать потери энергии в активном сопротивлении контура.
31. 1. Метод контурных токов используется обычным способом, однако, к напряжениям самоиндукции на катушках добавляем напряжения взаимной индукции (типа ). Контурные токи желательно выбирать так, чтобы на каждую катушку приходился свой контурный ток. а. Пример
Примечание: Перед М берем " -", так как имеем встречное включение
Примечание: Перед М берем " +", так как имеем согласное включение
2. Развязка индуктивных связей используется для замены индуктивно связанных катушек с одним общим зажимом на три обычных индуктивности.
Примечание: При другом расположении одноименных зажимов следует поменять всюду знак перед М. 3. Использование вместо реальных трансформаторов эквивалентных схем с идеальными трансформаторами часто упрощает расчет. 28 В электротехнике и электронике широко используются устройства, которые содержат индуктивные катушки, связанные общими магнитными потоками. Примером такого устройства является трансформатор, который служит для преобразования уровней переменных напряжений и токов и для согласования сопротивлений отдельных участков цепи. Физическая картина заключалась в следующем: переменный ток , протекая по виткам катушки (рис. 8.1, а) создает переменный магнитный поток , который сцепляясь с витками катушки, обуславливает появление ЭДС самоиндукции eL, противодействующей по закону Ленца изменению потокосцепления , то есть , где - индуктивность, численно равная отношению потокосцепления самоиндукции к току, его обуславливающему. Теперь рассмотрим явление взаимоиндукции, то есть явление наведения ЭДС в одной электрической цепи при изменении в ней потокосцепления, вызванного изменением тока в другой электрической цепи. Для этого проанализируем картину магнитного поля индуктивно-связанных катушек (рис. 8.1, б). Рис.8.1 - К определению индуктивно связанных цепей
Связь магнитных потоков катушек обусловливает их индуктивную связь. Взаимно индуктивная связь проявляется в наведении ЭДС (называемой ЭДС взаимоиндукции) в одной катушке при изменении тока в другой близко расположенной катушке. Цепи, в которых наводятся ЭДС взаимоиндукции, называют индуктивно связанными цепями. Рассмотрим цепь, состоящую из двух индуктивных катушек, намотан-ных на общий сердечник (рисунок 8.2). На схеме обозначено: L 1, R 1 и L 2, R 2 – индуктивности и активные сопротивления первой и второй катушек; М – взаимная индуктивность. Рисунок 8.2 ‑ Схема замещения двух, индуктивно связанных, катушек
Взаимная индуктивность M зависит от индуктивностей обоих контуров и их взаимного расположения, поэтому при некоторой ориентации даже близко расположенных контуров взаимная индуктивность может быть равной нулю. Единица измерения взаимной индуктивности и индуктивности одинакова − генри. Каждая из катушек пронизывается двумя магнитными потоками: потоком самоиндукции, вызванным собственным током, и потоком взаимоиндукции, вызванным током другой катушки. В соответствии с принципом наложения потокосцепление первой катушки (8.1) Потокосцепление второй катушки (8.2) Значения взаимной индуктивности М в выражениях (8.1) и (8.2) одинаковы и не могут превышать среднего геометрического из значений и: L1 и L2: где k – коэффициент связи, характеризующий магнитную связь между катушками. Его величина равна отношению взаимной индуктивности и среднего геометрического значения индуктивностей обеих катушек: где XL 1 и XL 2 – индуктивные сопротивления катушек. В пределе, когда магнитный поток одной катушки полностью пронизывает витки другой, k =1. При отсутствии магнитной связи k =0. Знаки слагаемых в (8.1) и (8.2) зависят от взаимного направления магнитных потоков катушек. В свою очередь, направления магнитных потоков зависят как от направления токов в катушках, так и от их взаимного расположения. Если катушки включены таким образом, что потоки складываются, то такое включение называют согласным. Если магнитные потоки направлены навстречу друг другу, то катушки включены встречно. При согласном направлении токов в двух индуктивно связанных ка-тушках зажимы этих катушек, относительно которых токи направлены одинаково, называют одноименными. Одноименные зажимы принято обозначать точками или звездочками. Физически направления магнитных потоков в катушках определяется правилом правоходового винта. Например, потоки Фм1 и Фм2 на рис. 8.3, а направлены противоположно при заданных направлениях токов i 1 и i 2, т.е. катушки включены встречно. Однако, если бы эти токи были ориентированы одинаково относительно зажимов соответственно 1 и 4, то потоки были бы направлены одинаково. Следовательно, эти зажимы можно считать одноименными. Рисунок 8.3 - Встречное включение катушек
На рис. 8.3, б изображена эл. схема, соответствующая рисунку 8.3, а, где наличие индуктивной связи между катушками показано дугой с стрелками, над которой стоит символ " М", а одноименные зажимы помечены символами (*). Определим напряжения на зажимах индуктивно связанных катушек на основе второго закона Кирхгофа: (8.3) (8.4) Основной формой расчета цепей синусоидального тока является метод комплексных амплитуд. Рассмотрим применение этого метода для расчета индуктивно связанных цепей. Пусть цепь на рисунке 8.1 находится в режиме гармонических колебаний. Запишем уравнения (8.3), (8.4) в комплексной форме: ; (8.5) , (8.6) где - комплекс сопротивления взаимоиндукции; знак плюс (+ М) ставят при согласном включении катушек; знак минус (- М) - при их встречном включении.
|