Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Распределение урожайности по хозяйствам региона, имеющим различную форму собственности ⇐ ПредыдущаяСтр 4 из 4
Решение. Поскольку обследованные хозяйства региона сгруппированы по формам собственности, предельную ошибку средней урожайности определяем по формуле для типической выборки, осуществляемой методом повторного отбора (численность генеральной совокупности N неизвестна): В этой формуле неизвестна средняя из внутригрупповых дисперсий. Она исчисляется по формуле: По представленным ранее (см. с. 98) данным Ф (t) для вероятности Р =0, 954 находим t = 2. Тогда предельная ошибка выборки, ц/га: Генеральная средняя: = ± . Для нахождения ее границ вначале нужно исчислить среднюю урожайность по выборочной совокупности , ц/га: Предельная относительная ошибка выборки, %: Доверительные пределы генеральной средней исчисляем, исходя из двойного неравенства:
Таким образом, с вероятностью 0, 954 можно гарантировать, что средняя урожайность зерновых культур по региону будет не менее чем 20 ц/га, но и не более чем 22 ц/га. Определение необходимого объема выборки. При проектировании выборочного наблюдения с заранее заданным значением допустимой ошибки выборки очень важно правильно определить численность (объем) выборочной совокупности, которая с определенной вероятностью обеспечит заданную точность результатов наблюдения. Формулы для определения необходимой численности выборки п легко получить непосредственно из формул ошибок выборки. Так, из формул предельной ошибки выборки для повторного отбора нетрудно (предварительно возведя в квадрат обе части равенства) выразить необходимую численность выборки: • для средней количественного признака (29) • для доли (альтернативного признака) (30) Аналогично из формул предельной ошибки выборки для бесповторного отбора находим, что (для средней); (31) (для доли). (32) Эти формулы показывают, что с увеличением предполагаемой ошибки выборки значительно уменьшается необходимый объем выборки. Для расчета объема выборки нужно знать дисперсию. Она может быть заимствована из проводимых ранее обследований данной или аналогичной совокупности, а если таковых нет, тогда для определения дисперсии надо провести специальное выборочное обследование небольшого объема. Задача 4. Для определения среднего возраста 1200 студентов факультета необходимо провести выборочное обследование методом случайного бесповторного отбора. Предварительно установлено, что среднее квадратическое отклонение возраста студентов равно 10 годам. Сколько студентов нужно обследовать, чтобы с вероятностью 0, 954 средняя ошибка выборки не превышала 3 года? Решение. Рассчитаем необходимую численность выборки, чел., по формуле бесповторного отбора (6.31), учитывая, что t = 2 при Р = 0, 954: Таким образом, выборка численностью 47 чел. обеспечивает заданную точность при бесповторном отборе. Выборочный метод широко используется в статистической практике для получения экономической информации. Большую актуальность приобретает выборочный метод в современных условиях перехода к рыночной экономике. Изменения в характере экономических отношений, аренда, собственность отдельных коллективов и лиц обусловливают изменения функций учета и статистики, сокращение и упрощение отчетности. Вместе с тем, возрастающие требования к менеджменту усиливают потребность в обеспечении надежной информацией, дальнейшего повышения ее оперативности. Все это обусловливает более широкое применение выборочного метода в экономике. В отечественной статистике уже накоплен определенный опыт выборочных обследований.
|