Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Строение кривой в окрестности обыкновенной точки






Пусть точка — обыкновенная точка. Тогда существует промежуток , что кривую можно представить в виде . На промежутке возьмём точку , . Тогда, согласно формуле Тейлора, .
a b Рис. 3

Остаточный член имеет вид: . Т.е. выражается через (а значит и через х) в виде многочлена п -ной степени, если отбросить остаточный член. Точность равенства может быть различной.

Согласно идеологии дифференциальной геометрии, геометрические объекты мы изучаем в бесконечно малой окрестности исследуемой точки. Поэтому можно начать с самой грубой оценки поведения кривой, положив п =1. Тогда из мы получим: или

,

где . Если в пренебречь бесконечно малыми второго порядка, мы получим уравнение касательной к кривой: .

Изучим уклонение MN кривой от её касательной. Из и имеем (см. рис. 4):

.

Если , то в её окрестности (т.е. в точке ) также будет положительна, ибо мы рассматриваем малые окрестности точки А. Т.о. в окрестности точки А влево и вправо от точки , т.е. кривая выпукла вниз (т.е. вогнута). Другими словами, вся кривая

в окрестности точки А расположена над касательной. Допустив, что и рассуждая аналогично, получим, что в этом случае кривая будет выпукла вверх (или просто выпукла), т.е. вся кривая в окрестности точки А будет расположена под касательной. В обоих случаях, как мы видим, уклонение кривой от касательной есть бесконечно малая величина второго порядка малости:

x
х0 х0+! х Рис. 4
А

.

Рассмотрим случай . Допустим, что . Тогда формула Тейлора даёт . В этом случае уклонение выразится формулой . Это есть величина . В этом случае точка А называется точкой распрямления.

Продолжая исследовать уклонения, нужно учитывать, что слева от точки х 0 приращение! х < 0, cправа –! х > 0.

Читателю рекомендуется самостоятельно исследовать случай, когда в т. х 0

, а .


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал