Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Замена переменных в определенном интеграле.






[T] пусть функция f(x) непрерывна на [a, b] и пусть выполнены следующие условия:

1) функцию х=j(t) дифференцируема на [a, b] и j’(t) непрерывна на [a, b]

2) Множеством значений функции х=j(t) является отрезок [a, b]

3) j(a)=a и j(b)=b, то справедлива формула

Доказательство: По формуле Ньютона- Лейбница:

Пусть F(x)- первообразная для функции f(x) на [a, b].

Рассмотрим сложную функцию Ф(t)=F(j(t)) Согласно правилу дифференцирования сложной функции находим: Ф’(t)=F’(j(t))*j’(t)=f(j(t))j’(t). Отсюда следует, что функция Ф(t) является первообразной для функции f(j(t))j’(t), непрерывной на [a, b] и поэтому согласно формуле Ньютона-Лейбница получаем, = Ф(b)-Ф(a)=F(j(b))-F(j(a))=F(b)-F(a)=

Замечание1. При исп-нии данной ф-лы не надо возвращ от новой переем-ной t к старой х.

Замечание 2. При исп-нии ф-лы надо проверять соблюдение всех условий.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал