![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
А) Расчет обратной матрицы матричным методом.
Приставим справа к матрице А единичную матрицу: (А | Е) =
В качестве 1-го ведущего элемента используем (– 1) во 3-м столбце матрицы А. С помощью этого элемента зануляем единственный не равный 0 отличный от ведущего элемент этого столбца матрицы А, произведя соответствующее элементарное преобразование строк матрицы (А | Е):
(А | Е) =
После мысленного исключения из полученной матрицы строки и столбца использованного ведущего элемента, в оставшихся строках и столбцах матрицы А в качестве следующего ведущего элемента выбираем (– 2) в ее 1-м столбце, и с помощью этого элемента зануляем остальные элементы этого столбца, произведя соответствующие элементарные преобразования строк матрицы (А | Е):
Исключая из рассмотрения строки и столбцы матрицы, образовавшейся на месте матрицы А, в которых находились использованные ведущие элементы, устанавливаем, что для зануления элементов во 2-м столбце в качестве ведущего элемента остался элемент, равный 1:
Т.о., на месте исходной матрицы А получена эквивалентная ей матрица, в каждой строке и в каждом столбце которой имеется только один ненулевой элемент. Чтобы эти элементы приняли значение 1, разделим первую строку полученной матрицы (А | Е) на (– 2) и вторую строку на (– 2):
Чтобы сформировать в левой части полученной матрицы единичную, переставим строки:
Следовательно, А –1 =
Проверка: АА − 1 =
=
|