Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Плоскость в пространстве
Всякое уравнение первой степени относительно координат (3.1) задает плоскость, и наоборот: всякая плоскость может быть представлена уравнением (3.1), которое называется уравнением плоскости. Вектор , ортогональный плоскости, называется нормальным вектором плоскости. В уравнении (3.1) коэффициенты A, B, C одновременно не равны 0. Особые случаи уравнения (3.1): 1. ‑ плоскость проходит через начало координат. 2. ‑ плоскость параллельна оси Oz. 3. ‑ плоскость проходит через ось Oz. 4. ‑ плоскость параллельна плоскости Oyz. Уравнения координатных плоскостей: . Пример 1.15. Cоставьте уравнение плоскости, зная, что точка служит основанием перпендикуляра, проведенного из начала координат к этой плоскости. Решение. По условию задачи вектор является нормальным вектором плоскости, тогда ее уравнение можно записать в виде . Подставив координаты точки , принадлежащей плоскости, найдем D: . Итак, . Пример 1.16. Составьте уравнение плоскости, проходящей через ось Оz и образующей с плоскостью угол 60о. Решение. Плоскость, проходящая через ось Oz, задается уравнением , где А и В одновременно не обращаются в нуль. Пусть В не равно 0, . По формуле косинуса угла между двумя плоскостями , где . Решая квадратное уравнение , находим его корни , , откуда получаем две плоскости и .
|