Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Г. Г. Винберг. 6 страница
Лит.: Абрамян А. Я., Гидронефроз и гидроуретер, в кн.: Многотомное руководство по хирургии, под ред. Б. В. Петровского, т. 9, M., 1959. В. Г. Цомык, В. Af. Верпгепова. ГИДРОНИЙ, ион гидрония, ион гидроксония, гидратирован-ный ион водорода в водном растворе H3O+. Свободный водородный ион H+ (т. е. ядро атома водорода - протон) в растворе связывается с молекулами воды, образуя гл. обр. ион Г.: H++ H2O = = НзО+. Из-за незначит. размера протона (10-13 см; радиусы остальных ионов имеют величину порядка 10-8 см) он создаёт сильное электрич. поле; между ним и неподелённой парой электронов кислорода молекулы воды возникает ковалентнаясвязь. Образование иона Г. аналогично образованию иона аммония NH4+ (см. Азот); установлено, что кристаллогидрат хлорной к-ты HClO4*H2O имеет ионную кристаллич. решётку, изоморфную перхлорату аммония NH4+ClO4-. Ион H3O+ в кристаллах носит назв. оксония (в отличие от Г.- иона H3O+ в растворе). Вследствие ассоциации молекул воды ион Г. оказывается связанным с большим количеством воды. Получающиеся при этом гидратированные ионы Г. выражают формулами H5O2+, H7O3+, H9O4+. Лит.: Самойлов О. Я., Структура водных растворов электролитов и гидратация ионов, M., 1957; Неницеску К., Общая химия, пер. с рум., M., 1968. ГИДРООКИСИ, гидроксиды, химические соединения окислов элементов с водой; один из гл. классов неорганич. соединений. Часто Г. наз. гидратами окислов, что не соответствует природе Г., поскольку они не содержат отд. молекул воды (см. Гидраты). В совр. междунар. номенклатуре принят термин " гидроксиды". Известны Г. почти всех химич. элементов. Г. многих металлов являются основаниями, Г. неметаллов - кислородными к-тами (см. также Кислоты и основания). Химич. свойства оснований определяются наличием иона гидроксила ОН-, а к-т - иона водорода H+. Этому соответствует и особая запись оснований и к-т, напр. Ba(OH)2 и H2SO4. Г., проявляющие как основные, так и кислотные свойства, паз. амфотер-ными (см. Амфотерностъ). Характер Г. зависит от положения элемента в периодической системе элементов Менделеева. На практике термин " Г." обычно применяют только по отношению к основным и амфотерным Г. ГИДРООКИСЛЫ ПРИРОДНЫЕ, обширная группа минералов, представляющих собой устойчивые на поверхности Земли соединения металлов (Al, Mn, Fe, Mg, U, W, V и др.) с гидроксилом (ОН)1- или OH1- и кислородом (так наз. оксигидраты). Кислородно-водородные группировки в составе Г. п., кроме гидроксила (OH)1-, часто представлены и H2O, входящей в них в виде твёрдого раствора или воды кристаллогидратного типа (см. Минерал). В большинстве Г. п. катионы кристаллохимически связаны с анионами О2- и (ОН)1- по симметрии октаэдра. Последние, связываясь между собой, образуют слоистые, цепочечные, реже каркасные мотивы кристаллич. структур. По хим. составу Г. п. подразделяются на простые [ гётит, FeOOH, гидраргиллит Al(OH)3 и др.] и сложные (напр., бек-керелит Ca[(UO2)6O4(OH)6]8H2O и др.). Г. п. при нагревании теряют воду ступенчато, превращаясь в стойкие, часто высокоогнеупорные простые окислы (Al2O3, MgO, Fe2Os, MnO2 и др.). В минеральных к-тах Г.п. хорошо растворимы, за исключением гидроокислов Mn, Al, Fe. Имеют стеклянный, жирный или полуметаллический блеск. Большинство Г. п. прозрачны или просвечивают в тонких осколках. Цвет зависит от хромофорных свойств атомов, входящих в состав Т.п., напр. Mn3+, Mn4+ - чёрные; Fe3+- красно-бурые; U6+-жёлтые. Твёрдость по минералогич. шкале различна: от 2, 5 (брусит, гидроокислы урана и др.) до 7, 2 (диаспор, псиломелан). Плотность зависит от атомной массы катиона, наличия молекул воды, структурной упаковки атомов в кристаллич. решётке и колеблется от 2400 до 7300 кг/мэ. Наиболее распространены минералы: диаспор, гётит, манганит, псиломелан, бёмит, лепидо-крокит, гидротунгстит, гетерогенит, гибб-сит, брусит и беккерелит. Г. п. образуются при процессах гипергенеза за счёт гидро-хим. разрушения и переотложения вещества первичных минералов горных пород и руд на поверхности Земли, часто с участием живых организмов. Г. п. входят в качестве важнейшей составной части в почвы, минеральные образования т. н. коры выветривания, зоны окисления месторождений, в состав осадков морей, континентальных озёр, текучих вод и т. п. Многие из них образуют крупные пром. месторождения полезных ископаемых (напр., бокситов, бурых железняков, окисных и гидроокисных марганцевых руд, урановых и ванадиевых руд). Лит.: Поваренных А. С., Кристал-лохимическая классификация минеральных видов, К., 1966; Минералы. Справочник, т. 2, в. 3, M., 1967. Г. П. Барсанов.
ГИДРООТВАЛ, гидротехнич. сооружение, предназначенное для складирования пустых пород (вскрыши, хвостов обогатительных фабрик и др.) средствами гидромеханизации. Г. сострит из ограждающих дамб, создающих ёмкость, включая и пруд-отстойник, устройств для отвода осветлённой воды и сооружений для пропуска паводковых и ливневых вод. Г. устраивают в замкнутых котлованах (выработанное пространство карьера, овраги, перегороженные дамбами), на равнинах с дамбами обвалования с четырёх сторон, на косогорах с возведением дамб с трёх сторон. Г. подразделяются в зависимости от высоты на низкие (до 10 м), средние (10-30 м) и высокие (св. 30 м), по годовой приёмной способности: до 1 млн. м3; от 1 до 2 млн. м3', от 2 до 5 млн. м3 и св. 5 млн. м3. Намыв грунтов в Г. производится эстакадным, низкоопорным и безэстакадным способами. В первом случае гидросмесь выпускается на намываемую поверхность из выпусков распределительного трубопровода, уложенного на эстакадах; во втором случае распределит, трубопровод укладывается на низких инвентарных опорах высотой до 1, 5 м; при безэстакадном намыве распределит, трубопровод укладывается по намываемому грунту и гидросмесь выпускается из торца трубы. Лит.: Ну рок Г. А., Гидромеханизация открытых разработок, М., 1970. В. И. Шелоганов. ГИДРООЧИСТКА, процесс селективного гидрирования содержащихся в моторных топливах (бензин, керосин, дизельное топливо), маслах и др. нефтепродуктах (напр., в сырье для каталитич. риформинга) органич. сернистых, азотистых и кислородных соединений, к-рые, присоединяя водород, образуют соответственно сероводород, аммиак и воду и в таком виде удаляются из очищаемого продукта. Г. ведут в присутствии гидри-рующего катализатора, напр, алюмомо-либдата кобальта, при 260 -430& deg; С и давлении водородсодержащего газа 1- ЮМн/м2 (10-100 кгс/см2). При Г. расходуется значит, количество водорода (чтобы снизить на 1% содержание серы, необходимо затратить его 9-18 л3 на 1 м3 сырья), поэтому установки Г. обычно совмещают с установками каталитич. риформинга, дающими избыточный водород. Образующийся при Г. сероводород улавливают и используют для получения серы и серной к-ты. В результате Г. повышается качество нефтепродуктов, снижается коррозия оборудования, уменьшается загрязнение атмосферы. Г. смазочных масел, применяемая вместо контактной очистки глинами, улучшает цвет и запах, понижает кислотность и коксуемость масел. Процесс Г. приобрёл очень большое значение в связи с вовлечением в переработку больших количеств сернистых и высокосернистых (более 1, 9% серы) нефтей. Лит.: Технология переработки нефти и газа, ч. 3- Черножуков Н. И., Очистка нефтепродуктов и производство специальных продуктов, М., 1966. В. В. Щекин. ГИДРОПАТИЯ (от гидро... и греч. pathos - страдание), устаревшее назв. водолечения. ГИДРОПЕРЕДАЧА ОБЪЁМНАЯ (гидростатическая), механизм для передачи механической энергии и преобразования движения за счёт гидростатич. напора жидкости. По кинематике различают Г. о. возвратно-поступательного, возвратно-поворотного и вращат. движения. Начало пром. применения Г.о. можно отнести к 1795, когда был изобретён гидравлический пресс. В кон. 19-нач. 20 вв. Г. о. начала применяться на судах воен-но-мор. флота для поворота орудийных башен. К 1920-30 относится начало применения Г. о. в металлорежущих станках. Г. о. состоит из объёмного насоса (ведущее звено), объёмного гидравлического двигателя, резервуара для рабочей жидкости и магистральных трубопроводов, иногда вместо насоса используется гидроаккумулятор или др. источник гидростатич. напора. Рабочая жидкость (минеральное масло или синтетич. жидкость) засасывается насосом в его рабочие камеры и затем нагнетается вытеснителями в рабочие камеры гидравлич. двигателя (гидромотора или гидроцилиндра). С помощью Г. о. обеспечивается бесступенчатое регулирование скоростей на ходу с малой инерционностью и автоматич. предохранением от перегрузок; самосмазываемость Г. о. способствует долговечной работе. Сложные кинематич. схемы Г. о. собираются на базе изготовляемых серийно нормализованных гидроузлов. Компактность Г. о. достигается за счёт работы на давлении до 35 Мн/м2 (350 кгс/см2), а. в гидропрессах - до 70 Мн/м2 (700 кгс! см2). Мощность Г. о. до 3000 кет, диапазон регулирования 1: 1000. Г. о. входят в состав объёмного гидропривода машин. По виду регулирования различают Г. о. объёмного, ступенчатого и дроссельного регулирования. В Г. о. вращат. движения с объёмным регулированием (рис.) жидкость из рабочих камер / регулируемого объёмного насоса 2 нагнетается поршнями-вытесни-телями 3 в рабочие камеры гидромотора 4. Из гидромотора рабочая жидкость сливается в резервуар 5, откуда снова засасывается насосом. Регулирование скорости гидромотора осуществляется изменением объёмов рабочих камер насоса и гидромотора при помощи червячных передач, приводимых вручную маховиками 6. При этом изменяется угол наклона шайбы 7, а следовательно, и ход поршней-вы-теснителей 3. Разработкой Г. о. в СССР занимается ряд ин-тов и заводов; за рубежом - фирмы Виккерс, Денисок (США), Лукас (Великобритания), Рек-срот (ФРГ) и др. Лит.: Объёмные гидравлические приводы, М., 1969. И. 3. Зайченко. ГИДРОПЕРИТ, препарат из группы антисептических средств, комплексное соединение перекиси водорода с мочевиной. Выпускают в таблетках, к-рые растворяют в воде и применяют для полосканий и промываний рта, горла и др. ГИДРОПОДЪЁМ ШАХТНЫЙ, система подъёма гидросмеси из шахт. Подъём гидросмеси осуществляется углесосами, загрузочно-обменными аппаратами и эрлифтами. ГИДРОПОНИКА (от гидро... и греч. ponos - работа), выращивание растений без почвы, на искусств, средах. При этом корневая система растений развивается на твёрдых субстратах (не имеющих пи-тат. значения), в воде или во влажном воздухе (аэропоника). Питание растения получают из питат. раствора, окружающего корни. Г. позволяет регулировать условия выращивания растений - создавать режим питания для корневой системы, полностью обеспечивающий потребности растений в питат. элементах, концентрацию углекислого газа в воздухе, наиболее благоприятную для фотосинтеза, а также регулировать темп-ру воздуха и корне-обитаемого пространства, влажность воздуха, интенсивность и продолжительность освещения. Создание оптимальных условий для роста и развития растений обеспечивает получение очень высоких урожаев, лучшего качества и за более короткие сроки. Выращивание растений методом Г. менее трудоёмко, чем в почвенной культуре, вода и питат. вещества расходуются экономнее. Подача питат. раствора легко автоматизируется. В условиях Г. практически отпадает борьба с сорняками. В СССР Г. применяется гл. обр. для выращивания огурцов и томатов, цветов, получения витаминной зелёной массы зерновых культур, используемой для подкормки молодняка в животноводстве в зимнее время. Г. применяется также в н.-и. работе. Большое значение для успешного роста растений в установках Г. имеет состав питат. раствора, дифференцированный в зависимости от вида растений, их возраста, а также осн. факторов внешней среды (темп-pa воздуха и корнеобитаемого слоя, относит, влажность воздуха и др.). В питательный раствор входят соли азота, фосфора, калия и др. элементов (Са, Mg, Fe, В, Mn, Zn, Си, Мо). Концентрация питат. раствора для водных культур ок. 6 ммолей/л, для гравийных - ок. 30 ммолей/л, для аэропоники - несколько выше. Большие площади теплиц заняты под Г. в пригородных зонах Москвы, Ленинграда, Киева, Свердловска и др. городов. В открытом грунте Г. используется в Армении, Азербайджане. За рубежом Г. широкое развитие получила в Великобритании, Японии, Франции, Италии, на Антильских о-вах. Лит.: Выращивание растений без почвы, Л., 1960; Алиев Э. А., Дюкарев Ю. А., Латенко Б. В., Выращивание овощей в теплицах без почвы, К., 1964; Бентли М., Промышленная гидропоника, пер. с англ., М., 1965; Журбицкий 3. И,, Теория и практика вегетационного метода, М., 1968. 3. И. Журбицкий. ГИДРОПРИВОД МАШИН, совокупность источника энергии и устройства для её преобразования и транспортировки посредством жидкости к приводимой машине. Осн. целью применения Г. м. является получение требуемой зависимости скорости приводимой машины от нагрузки, в ряде случаев использование гидропривода позволяет получать и др. эксплуатационные преимущества: рациональнее расположить оборудование, более полно использовать мощность двигателя, снизить ударные нагрузки в системе и т. д. В качестве источника энергии могут использоваться электрич. или тепловой двигатель, жидкость под давлением и др. Соответственно Г. м. называют гидроэлектроприводом, паро- (газо-) турбогид-роприводом и т. д. В зависимости от вида гидропередачи, т. е. устройства, транспортирующего и преобразующего энергию, различают гидростатич. (объёмный), гидродинамический и смешанный приводы (см. Гидропередача объёмная, Гидродинамическая передача). Схема гидропривода легкового автомобиля: 1 - гидротрансформатор; 2 - распределитель; 3 - предохранительный клапан; 4 - клапан переключения насосов; 5 - гидроаккумулятор; 6 - сцепление; 7 - цилиндры ленточных тормозов; 8 - ленточные тормоза; 9 - резервуар; 10 - насосы; 11 - клапаны; 12 - маслоохладитель; 13 - вакуумный модулятор. Объёмный Г. м. позволяет с высокой точностью поддерживать или изменять скорость машины при произвольном нагружении, осуществлять слежение - точно воспроизводить заданные режимы вращат. или возвратно-посту-пат. движения, усиливая одновременно управляющее воздействие. Наиболее широко объёмный Г. м. применяется в металлорежущих станках, прессах, в системах управления летат. аппаратов, судов, тяжёлых автомобилей, в системах автоматич. управления и регулирования тепловых двигателей, гидротурбин. Реже объёмный Г. м. используется в качестве гл. приводов транспортных установок на автомобилях, кранах. Динамический Г. м. позволяет осуществлять только вращат. движение. В приводах этого вида частота вращения ведущего вала автоматически меняется с изменением нагрузки, что делает их особо пригодными для трансп. установок: скорость экипажа автоматически меняется в зависимости от сопротивления движению. На судах Г. м. используют для привода винтов. Находят применение динамич. Г. м. и в стационарных установках: для привода питат. насосов ТЭЦ, шахтных подъёмных машин, вентиляторов и т. п. В этих случаях на них возлагаются те же задачи, что и на объёмный Г. м.- программное изменение скорости приводимой машины. Примером смешанного Г. м. может служить привод отд. конструкций штамповочных прессов, в к-рых энергия от электродвигателя забирается центробежным насосом, подающим жидкость в гидравлич. цилиндр, к-рый приводит в движение рабочий инструмент пресса. Возможны и др. комбинации. Напр., в Г. м., используемом для запуска газовых турбин, энергия сжатого газа в гидроаккумуляторе сообщается жидкости, к-рая подаётся к гидротурбине, раскручивающей запускаемый тепловой двигатель. На рис. дана схема гидропривода легкового автомобиля, включающего в себя гидродинамич. передачу (гидротрансформатор) и объёмный Г. м. для управления сцеплением, ленточными тормозами, заполнением гидротрансформатора. Прямая или понижающая передача устанавливается распределителем - объёмным Г. м., соединённым с рычагом. Объёмные Г. м. строятся на мощности до 5000 кет, однако осн. масса этих устройств имеет мощность 5-15 кет', известны самолётные Г. м. с частотой вращения до 18 000 об/мин, однако более распространены Г. м. с частотой вращения до 1000 об/мин. Дннамич. Г. м. работают с частотой вращения до 35 000 об/мин (хотя известны Г. м. и на 300 об/мин), ограничений по передаваемой мощности практически нет (известны установки на 18 000 кет и более, наибольшее число построенных Г. м. - автомобильные агрегаты, их мощность до 400 кет). Лит. см. при ст. Гидродинамическая передача, Гидропередача объёмная. ГИДРОПРОЕКТ, Всесоюзный проектно-изыскательский и научно-исследовательский и н с т и т у т и м. С. Я. Ж у к а, находится в ведении Министерства энергетики и электрификации СССР. Разрабатывает водноэнергетические схемы, определяющие пути комплексного использования и охраны водных ресурсов СССР, проекты гидроэлектростанций, судоходных сооружении, каналов промышленного водоснабжения и т. п. В его составе: проектные и изыскательские отделы в Москве, отделения и филиалы в Ленинграде, Харькове, Ташкенте, Тбилиси, Баку, Ереване, Красноярске, Куйбышеве, Алма-Ате, н.-и. сектор, экспериментальная база и др. подразделения. Г. изучено св. 500 осн. водотоков СССР, составлены проекты крупнейших гидроэлектростанций (Братская, Красноярская, Саяно-Шушенская и др.), судоходных соединений и водо-пром. каналов. По проектам Г. построены и сооружаются гидроузлы в ряде со-циалистич. и развивающихся стран. С 1958 Г. публикует Труды, посвящённые актуальным вопросам проектирования, изысканий и исследований гидроэнергетических и гидротехнических сооружений. Награждён орденом Ленина (1961). ГИДРОРАЗБИВАТЕЛЬ, аппарат для размельчения сухих волокнистых полуфабрикатов, макулатуры и оборотного брака и превращения их в водную суспензию при произ-ве бумаги и картона. Г. состоит из цилиндрич. ванны с ножами и плоского ротора с такими же ножами, при вращении к-рых создаётся интенсивная циркуляция суспензии. Г. бывают периодич. и непрерывного действия. В последнем случае в днище ванны устанавливается перфорированное сито (экстрактор) для непрерывного отвода волокнистой суспензии. Диаметр ванны до 6 м, производительность до 180 m в сутки. ГИДРОСАЛЬПИНКС (от гидро... и греч. salpinx - труба), скопление в маточной трубе женщин прозрачной жидкости бледно-жёлтого цвета (транссудата) вследствие нарушения в трубе крово- и лимфообращения при её воспалении - сальпингите (см. Салъпингоофорит). ГИДРОСАМОЛЁТ, самолёт, способный базироваться, производить взлёт и посадку на водной поверхности. Общие принципы аэродинамич. и конструктивной компоновки Г. такие же, как и у сухопутного самолёта, но дополнительно Г. удовлетворяет специфич. требованиям эксплуатации (остойчивость на плаву, устойчивость пробега и разбега, способность маневрирования на водной поверхности и др.). При нахождении на плаву вес Г. полностью воспринимается гидроста-тич. подъёмной силой (водоизмещением его корпуса), в процессе разбега - подъёмной силой глиссирующей поверхности днища его корпуса и аэродинамической подъёмной силой крыла, которая при достижении взлётной скорости обеспечивает отрыв Г. от водной поверхности. Профилированные обводы днища корпуса Г. создают гидродинамич. подъёмную силу, обусловливают устойчивость бега, достижение минимальных перегрузки и брызгообразования (при разбеге и пробеге Г.). Наличие на днище корпуса Г. поперечного уступа - редана способствует отрыву Г. от водной поверхности на предвзлётных скоростях. Опыт применения подводных крыльев (сов. Г. Бе-8) в качестве взлётно-посадочных устройств Г. показал значит, упрощение пилотирования при взлёте и посадке. Г. обычно строят по двум конструктивным схемам: в виде летающей лодки, в корпусе к-рой располагаются экипаж, пассажиры и установлено необходимое навигационно-пилотажное оборудование, и в виде обычного сухопутного самолёта, имеющего шасси с поплавками. Боковую остойчивость летающей лодки на плаву обеспечивают подкрыльные поплавки или жабры (обтекаемые водоизмещающие ёмкости), прикреплённые по бокам корпуса лодки. Г. с взлётно-посадочным устройством в виде сочетания колёсного шасси и лодки или поплавков (самолёт-амфибия) может базироваться как на акваториях, так и на сухопутных аэродромах. В России первый Г. поплавкового типа был создан в 1911 Я. М. Гаккелем. Этот Г. был отмечен на Междунар. авиационной выставке в 1911 большой серебряной медалью. Приоритет в создании летающей лодки (1911) принадлежит О. С. Ко-стовичу. Первые летающие лодки в России (М-1, М-4, М-9) были построены в 1913- 1915 под рук. Д. П. Григоровича. После Великой Октябрьской социалистической революции над созданием Г. для авиации военно-мор. флота и гражд. авиации СССР работали авиаконструкторы Д. П. Григорович, А. Н. Туполев (МК-1, установленные на поплавки самолёты ТБ-1 и Р - 6), Г. М. Бериев (морской ближний разведчик МБР-2, морской пассажирский Г. МП-1; корабельные ката-пультные Г. Бе-2 и Бе-4; патрульная летающая лодка Бе-6; реактивный Г. Бе-10 и турбовинтовой самолёт-амфибия М-12), И.В.Четвериков (Че-2), В. Б. Шав-ров (самолёт-амфибия Ш-2) и др. За рубежом строительством Г. занимались авиац. фирмы во Франции, США, Великобритании, Германии, Италии и Японии. На Г. Бе-10 в 1961 сов. лётчиками Н. И. Андриевским и Г. И. Бурьяновым установлено 12 междунар. рекордов, в т. ч. скорости полёта (912 км/ч), высоты полёта (14 962 м) и грузоподъёмности (15 206 кг). Дальнейшее развитие идёт по пути создания Г. различного назначения: для гру-зо-пассажирских перевозок в районах, изобилующих акваториями, для разведки рыбы, спасат. работ на море, тушения лесных пожаров и др. Лит.: Самсонов П. Д., Проектирование и конструкции гидросамолётов, М. -Л., 1936; Косоуров К. Ф., Теоретические основы гидроавиации, М., 1961; Шавров В. Б., История конструкций самолётов в СССР, М., 1969. Г. М. Борисе. ГИДРОСЛЮДЫ, слюдоподобные минералы из группы алюмосиликатов слоистой структуры, содержащие добавочную воду и, возможно, оксоний (Н3О1+). Г. обычно являются промежуточными продуктами стадийного перехода различных слюд в каолин, монтмориллонит, вермикулит и хлориты. Наиболее распространённые Г.: гидромусковит (иллит) (К, Н20)А12[(А1, Si) Si30, 0](OH)2.nH20, ректорит (Н2О, К)А12[А1х314-кО, о](ОН)2-•ЗН2О, глауконит(К, Н2ОХРе, М8, А1)2[(А1, Si), SisOio](OH)2, гидробиотит (К, Н2О) (Mg, Fe3+)3 [AlSi3O, o] (OH)2-nH2O. Переход слюд в Г. сопровождается выносом щелочей с заменой их в межслоевых промежутках молекулярной водой, вероятно оксонием, а также вхождением воды, связанной с катионами, в особые дополнит, слои. При нагревании Г. сильно увеличиваются в объёме в результате раздви-гания межпакетных промежутков вскипающей и удаляющейся водой. Образование Г. преим. связано с выветриванием и изменением слюдяных минералов в гранитах, пегматитах и др. горных породах. Образуются также в виде продуктов разложения алюмосиликатных осадков морей при диагенезе. Реже образуются в низкотемпературных гидротермальных ассоциациях за счёт изменения вмещающих рудные жилы горных пород. Г. П. Барсанов. ГИДРОСМЕСЬ, механическая смесь частиц сыпучих или искусственно размельчённых твёрдых материалов различной крупности с водой. В нефтяной пром-сти и строительстве Г. наз. растворами, добавляя характеристику твёрдого компонента: глинистый раствор, цементный, меловой и т. д. В горной пром-сти смеси дроблёных руд, концентратов и шламов с водой наз. пульпами. ГИДРОСТАТ (отгидро... игреч. states - стоящий, неподвижный), подводный аппарат, опускаемый на тросе с судна-базы, для выполнения подводных исследований и работ. Г. представляет собой камеру из прочных материалов (алюминиево-маг-ниевые сплавы, стеклопластики и др.) шарообразной или цилиндрич. формы, в к-рой размещается 1-3 оператора. Г. с цилиндрич. формой камеры впервые был построен Гартманом (США) в 1911. Совр. Г. оборудуются системой регенерации воздуха, устройствами для наблюдения под водой, светильниками, н.-и. приборами, кинофотоаппаратурой. Подача электроэнергии и телефонная связь осуществляются по кабелю. Г., предназначенные для подводных работ (по подъёму затонувших судов и др.), имеют устройства для закрепления на объекте работ и управляемые изнутри Г. манипуляторы [напр., рабочие камеры РК-680 (СССР) (рис.) и Дискаверер (США)]. Иногда Г. оборудуются гребными винтами, обеспечивающими возможность ограниченных перемещений под водой. Для выполнения глубоководных исследований служат, напр., гидростат ГГ-57 и наблюдат. камера НК-300 (СССР), наблюдат. камеры Галеацци (Италия) и др. Глубина погружения совр. Г. до 300 м. Г. для глубин более 300 м широкого развития в будущем не получат, поскольку спуск на тросе с надводного судна ограничивает возможности их использования. Г. повсеместно заменяются автономными глубоководными аппаратами и снарядами. См. также Батискаф и Батисфера. Рабочая камера РК-680. Лит.: Диомидов М. Н., Дмитриев А. Н., Покорение глубин, Л., 1964. Н. П. Чикер. ГИДРОСТАТИКА (от гидро... и статика), раздел гидромеханики, в к-ром изучаются равновесие жидкости и воздействие покоящейся жидкости на погружённые в неё тела. Одна из осн. задач Г.- изучение распределения давления в жидкости. Зная распределение давления, можно на основании законов Г. рассчитать силы, действующие со стороны покоящейся жидкости на погружённые в неё тела, напр, на подводную лодку, на стенки и дно сосуда, на стену плотины и т. д. В частности, можно вывести условия плавания тел на поверхности или внутри жидкости, а также выяснить, при каких условиях плавающие тела будут обладать устойчивостью, что особенно важно в кораблестроении. На законах Г., в частности на Паскаля законе, основано действие гидравлич. пресса, гидравлич. аккумулятора, жидкостного манометра, сифона и мн. др. машин и приборов. Если покоящаяся тяжёлая жидкость имеет свободную поверхность, во всех точках к-рой внешнее давление равно Ро, то давление жидкости на глубине h равно: p = pa + pgh, т. е. давление на глубине h равно внешнему давлению, сложенному с весом столба жидкости, высота к-poro равна h, а площадь основания равна единице (р - плотность жидкости, g - ускорение свободного падения). Свойства давления, выражаемые этой формулой, используются в гидростатич. машинах (в гидравлич. прессе, гидравлич. аккумуляторе и др.). Один из осн. законов Г. - Архимеда закон определяет величину подъёмной силы, действующей на тело, погружённое в жидкость или газ. Часто встречаются случаи, когда жидкость движется вместе с сосудом так, что по отношению к сосуду она покоится. На основе законов Г. можно определить форму поверхности жидкости в таком сосуде, напр, во вращающемся. Поскольку поверхность жидкости всегда устанавливается таким образом, чтобы сумма всех сил, действующих на частицы жидкости, кроме сил давления, была нормальна к поверхности, в цилиндрич. сосуде, равномерно вращающемся вокруг вертикальной оси, поверхность жидкости принимает форму параболоида вращения. Так же обстоит дело в океанах - поверхность воды не является в точности шаровой, а несколько сплюснута к полюсам. Этим же в какой-то степени объясняется сплюснутая к полюсам форма самого земного шара. Т. о., законы Г., позволяющие определить форму поверхности равномерно вращающейся жидкости, важны в космогонии. Лит.: Элементарный учебник физики, под ред. Г. С. Ландсберга, 6 изд., т. 1, М., 1968; Хайкин С. Э., Физические основы механики, М., 1962, гл. 15. ГИДРОСТАТИЧЕСКИЙ ПАРАДОКС, заключается в том, что вес жидкости, налитой в сосуд, может отличаться от силы давления, оказываемой ею на дно сосуда. Так, в расширяющихся кверху сосудах (рис.) сила давления на дно меньше веса жидкости, а в суживающихся - больше. В цилиндрич. сосуде обе силы одинаковы. Если одна и та же жидкость налита до одной и той же высоты в сосуды разной формы, но с одинаковой площадью дна, то, несмотря на различный вес налитой жидкости, сила давления на дно одинакова для всех сосудов и равна весу жидкости в цилиндрич. сосуде. Это следует из того, что давление покоящейся жидкости зависит только от глубины под свободной поверхностью и от плотности жидкости. Объясняется Г. п. тем, что поскольку гидростатич. давление р всегда нормально к стенкам сосуда, сила давления на наклонные стенки имеет вертикальную составляющую р„ к-рая компенсирует вес излишнего против цилиндра / объёма жидкости в сосуде 3 и вес недостающего против цилиндра / объёма жидкости в сосуде 2. Г. п. обнаружен франц. физиком Б. Паскалем.
|