Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






V. Политическое деление 54 страница






Сырьём для получения С. к. могут служить: сера, серный колчедан FeS2, отходящие газы печей окислительного обжига сульфидных руд Си, Pb, Zn и др. металлов, содержащие SO2. В СССР основное количество С. к. получают из серного колчедана. Сжигают FeS2 в печах, где он находится в состоянии кипящего слоя. Это достигается быстрым продуванием воздуха через слой тонко измельчённого колчедана. Получаемая газовая смесь содержит SO2, O2, N2 , примеси SO3, паров Н2О, As2O3, SiO2 и др. и несёт много огарковой пыли, от к-рой газы очищаются в электрофильтрах.

С. к. получают из SO2 двумя способами: нитрозным (башенным) и контактным. Переработка SO2 в С. к. по нитрозному способу осуществляется в продукционных башнях - цилиндрич. резервуарах (высотой 15 м и более), заполненных насадкой из керамических колец. Сверху, навстречу газовому потоку разбрызгивается " нитроза" - разбавленная С. к., содержащая нитрозилсерную кислоту NOOSOsH, получаемую по реакции:

N2O3 + 2H2SO4 = 2 NOOSO3H + Н2О. Окисление SO2 окислами азота происходит в растворе после его абсорбции нитрозой. Водою нитроза гидролизуется: NOOSO3H + Н2O = H2SO4 + HNO2. Сернистый газ, поступивший в башни, с водой образует сернистую к-ту:

SO2 + Н2О = Н23.

Взаимодействие HNO2 и H2SO3 приводит к получению С. к.:

2 HNO2 + H2SO3 = H2SO4 + 2 NO + Н2О.

Выделяющаяся NO превращается в окислительной башне в N2O3 (точнее в смесь NO + NO2). Оттуда газы поступают в поглотительные башни, где навстречу им сверху подаётся С. к. Образуется нитроза, к-рую перекачивают в продукционные башни. Т. о. осуществляется непрерывность произ-ва и круговорот окислов азота. Неизбежные потери их с выхлопными газами восполняются добавлением HNO3.

С. к., получаемая нитрозным способом, имеет недостаточно высокую концентрацию и содержит вредные примеси (напр., As). Её произ-во сопровождается выбросом в атмосферу окислов азота (" лисий хвост", названный так по цвету NO2).

Принцип контактного способа производства С. к. был открыт в 1831 П. Филипсом (Великобритания). Первым катализатором была платина. В кон. 19 - нач. 20 вв. было открыто ускорение окисления SO2 в SO3 ванадиевым ангидридом V2OS. Особенно большую роль в изучении действия ванадиевых катализаторов и их подборе сыграли исследования сов. учёных А. Е. Ададурова, Г. К. Борескова, Ф. Н. Юшкевича и др. Совр. сернокислотные з-ды строят для работы по контактному методу. В качестве основы катализатора применяются окислы ванадия с добавками SiO2, A12O3, К2О, СаО, ВаО в различных соотношениях. Все ванадиевые контактные массы проявляют свою активность только при темп-ре не ниже ~420 0С. В контактном аппарате газ проходит обычно 4 или 5 слоев контактной массы. В произ-ве С. к. контактным способом обжиговый газ предварительно очищают от примесей, отравляющих катализатор. As, Se и остатки пыли удаляют в промывных башнях, орошаемых С. к. От тумана Н24 (образующейся из присутствующих в газовой смеси SО3 и Н2О) освобождают в мокрых электрофильтрах. Пары Н2О поглощаются концентрированной С. к. в сушильных башнях. Затем смесь SO2 с воздухом проходит через катализатор (контактную массу) и окисляется до SO3:

SO2 + 1/2O2= SO3.

Серный ангидрид далее поглощается водой, содержащейся в разбавленной H2SO4:

SO3 + Н2О = H2SO4.

В зависимости от количества воды, поступившей в процесс, получается раствор С. к. в воде или олеум.

В 1973 объём произ-ва С. к. (в моногидрате) составлял (млн. т): СССР -14, 9, США - 28, 7, Япония - 7, 1, ФРГ - 5, 5, Франция - 4, 4, Великобритания - 3, 9, Италия - 3, 0, Польша - 2, 9, Чехословакия-1, 2, ГДР - 1, 1, Югославия -0, 9.

Применение. С. к.- один из важнейших продуктов основной хим. пром-сти. Для технич. целей выпускаются след, сорта С. к.: башенная (не менее 75% H2SO4 купоросное масло (не менее 92, 5%) и олеум, или дымящая С. к. (раствор 18, 5-20% SO3 в H2SO4), а также особо чистая аккумуляторная С. к. (92-94%; разбавленная водой до 26-31%служит электролитом в свинцовых аккумуляторах). Кроме того, производится реактивная С. к. (92-94%), получаемая контактным способом в аппаратуре из кварца или Pt. Крепость С. к. определяют по её плотности, измеряемой ареометром. Большая часть вырабатываемой башенной С. к. расходуется на изготовление минеральных удобрений. На свойстве вытеснять к-ты из их солей основано применение С. к. в произ-ве фосфорной, соляной, борной, плавиковой и др. к-т. Концентрированная С. к. служит для очистки нефтепродуктов от сернистых я непредельных органич. соединений. Разбавленная С. к. применяетря для удаления окалины с проволоки и листов перед лужением и оцинкованием, для травления металлич. поверхностей перед покрытием хромом, никелем, медью и др. Она используется в металлургии - с её помощью разлагают комплексные руды (в частности, урановые). В органич. синтезе концентрированная С. к.- необходимый компонент нитрующих смесей и сульфирующее средство при получении мн. красителей и лекарственных веществ. Благодаря высокой гигроскопичности С. к. применяется для осушки газов, для концентрирования азотной к-ты.

Техника безопасности. В произ-ве С. к. опасность представляют ядовитые газы (SO2 и NO2 а также пары SO3 и H2SO4. Поэтому обязательны хорошая вентиляция, полная герметизация аппаратуры. С. к. вызывает на коже тяжёлые ожоги, вследствие чего обращение

с ней требует крайней осторожности и защитных приспособлений (очки, резиновые перчатки, фартуки, сапоги). При разбавлении надо лить С. к. в воду тонкой струёй при перемешивании. Приливание же воды к С. к. вызывает разбрызгивание (вследствие большого выделения тепла).

Лит. Справочник сернокислотчика, под

ред. Малина К. М., 2 изд., М.. 1971; М а л и н К. М., А р к и н Н. Л., Б о р е с к о в Г. К., С л и н ь к о М. Г., Технология серной кислоты, М., 1950; Боресков Г. К., Катализ в производстве серной кислоты, М.- Л., 1954; Амелин А. Г., Я ш к е Е. В., Производство серной кислоты, М., 1974; Лукьянов П. М., Краткая история химической промышленности СССР, М., 1959. И. К. Малина.

СЕРНАЯ МАЗЬ, лекарственное средство, состоящее из очищенной серы и консистентной эмульсии (вода, вазелин). Применяют при лечении чесотки и др. кожных заболеваний.

СЕРНАЯ ПРОБКА, скопление серы в наружном слуховом проходе человека; может закрыть его просвет. Признаки образования С. п.- снижение слуха, ощущение шума в ухе, аутофония (больной ощущает резонанс своего голоса в ухе). С. п. чаще удаляют промыванием, иногда -с помощью спец. инструмента.

СЕРНИСТАЯ КИСЛОТА, H2SO3, слабая двухосновная кислота, отвечающая степени окисления серы +4. Известна только в разбавленных водных растворах. Константы диссоциации: K1= 1, 6 х 10-2, К2 = 1, 0 х 10-7 (18 °С). Даёт два ряда солей: нормальные - сульфиты и кислые - гидросульфиты. H2SO3 - сильный восстановитель (растворы её уже при стоянии на воздухе постепенно превращаются в H2SO4), при взаимодействии с более сильными восстановителями (напр., H2S) выступает как окислитель. Получают растворением SO2 в воде. В водных растворах одновременно имеют место след. равновесия: Н2О + SO2< => H2SO3< => H+ + HSO3-< => 2 Н+ + SОз2-

Продукты присоединения С. к. к органич. красящим веществам бесцветны или слабо окрашены. На этом основано применение С. к. для беления таких материалов, к-рые не выдерживают действия сильных окислителей, напр. хлора и гипохлоритов.

СЕРНИСТОКИСЛЫЕ СОЛИ, то же, что сульфиты.

СЕРНИСТЫЕ КРАСИТЕЛИ, органич. красители, представляющие собой высокомолекулярные соединения, содержащие гетероциклы
[ris]

и группы SH и Sn, где п> = 2(хим. строение точно не установлено). С. к.- аморфные вещества, нерастворимые в воде и в большинстве органич. растворителей; при действии Na2S образуют растворимые в воде лейкосоединения по схеме:
[ris]

к-рые после крашения окисляются кислородом воздуха, вновь превращаясь на волокне в нерастворимые С. к. Получают С. к. длительным нагреванием различных органич. соединений: ароматических амино-, нитро-, аминоокси- и нитрооксисо-единений, гетероциклических азинов и др. с серой или с полисульфидом натрия Na2Sn (n = 2- 9). С. к. обычно неярки. Наибольшее значение имеют чёрные, синие, коричневые и зелёные; меньшее -жёлтые и оранжевые; С. к. красного цвета неизвестны. Чёрные С. к. дают достаточно устойчивые окраски, другие -менее прочные. Это недорогие красители, удобные в применении; широко используются для окраски хл.-бум. тканей; в текстильной пром-сти частично заменяются кубовыми красителями и реактивными красителями для получения более ярких и прочных окрасок.

Лит.: Ч е к а л и н М. А., П а с с е т Б. В., И о ф ф е Б. А., Технология органических красителей и промежуточных продуктов, Л., 1972. М. А. Чекалин.

СЕРНИСТЫЕ МЕТАЛЛЫ, то же, что сульфиды.

СЕРНИСТЫЙ АНГИДРИД, серы двуокись, оксид серы (IV) SO2, бесцветный газ с характерным резким запахом. В природе встречается в вулканических газах. При -10, 5 °С сгущается в бесцветную жидкость, затвердевающую при -75 °С в кристаллич. массу. Критич. темп-ра 157, 3 °С, критич. давление 77, 8 атм.

SO2 хорошо растворим в воде с образованием сернистой кислоты H2SO3. Кислород окисляет SO2 при высоких темп-pax в присутствии катализаторов; может окисляться до SO3 и H2SO4 и восстанавливаться до S; с водными растворами щелочей SO2 образует соли сернистой к-ты. Термически SO2 очень устойчив; заметная диссоциация его на S и О2 или SO и О происходит лишь ок. 2800 °С.

В лаборатории получают действием H2SO4 на гидросульфиты, напр. 2NaHSO3 + H2SO4 = Na2SO4 + 2SO2 + 2H2O или нагреванием медных стружек с концентрированной серной кислотой

Си + 2H2SO4 = CuSO4 + SO2 + 2Н2О.

О пром. получении см. Серная кислота.

Основная область применения SO2 -произ-во серной к-ты; применяется в бум. и текст. пром-сти, а также для сульфатации овощей и фруктов. Большая теплота испарения и лёгкая конденсируемость позволяют использовать его в холодильной технике. Как сильный восстановитель в водных растворах SO2 обесцвечивает многие органич. красители и применяется при отбеливании тканей, сахара и др.

С. а. токсичен. Он может поступать в организм через дыхат. пути во время обжига серных руд (при получении серной кислоты) на медеплавильных заводах, при сжигании содержащего серу топлива в кузницах, котельных, на суперфосфатных заводах, тепловых электростанциях и т. п. В лёгких случаях отравления С. а. появляются кашель, насморк, слезотечение, чувство сухости в горле, осиплость, боль в груди; при острых отравлениях ср. тяжести, кроме того, головная боль, головокружение, общая слабость, боль в подложечной области; при осмотре - признаки хим. ожога слизистых оболочек дыхат. путей. Длит. воздействие С. а. может вызвать хронич. отравление. Оно проявляется атрофич. ринитом, поражением зубов, часто обостряющимся токсич. бронхитом с приступами удушья. Возможны поражение печени, системы крови, развитие пневмосклероза. Профилактика: герметизация производств. оборудования, эффективная вентиляция, улавливание С. а. из хвостовых и дымовых газов, индивидуальная защита органов дыхания (противогаз). Максимально допустимая концентрация С. а. в воздухе производственных помещений 1, 0 мг/м3. Среднесуточная концентрация в населённых пунктах не должна превышать 0, 15 мг/м3. Ежегодно в атмосферу выбрасываются десятки млн. т С. а., образующегося при промышленном сжигании углей и нефти, содержащих соединения серы. Очистка отбросных газов от С. а.- важная научно-технич. задача. И. К. Малина, А. А. Каспаров,

СЕРНИСТЫЙ ВОДОРОД, сероводород, H2S, простейшее соединение серы с водородом. Бесцветный газ, при большом разбавлении пахнет тухлыми яйцами.

Впервые подробно изучен К. Шееле в 1777. Содержится в вулканических газах, в нек-рых минеральных водах (в СССР - в Кемери, Пятигорске, Мацесте и др.), в Чёрном море на глубинах свыше 150 м. Постоянно образуется при гниении органических остатков животного происхождения.

При -60, 38 °С превращается в бесцветную жидкость, кристаллизующуюся при -85, 6 °С. Твёрдый С. в. существует в трёх модификациях с точками перехода -170 °С и -147 °С. Молекула С. в. полярна, ионизационный потенциал 10, 5 в. 1 объём воды растворяет в обычных условиях ок. 3 объёмов С. в; с образованием слабой сероводородной кислоты. При нагревании его растворимость понижается. Охлаждением насыщенного водного раствора С. в. можно получить кристаллогидрат H2S х 6Н2О. С. в. загорается на воздухе ок. 300 °С и сгорает голубым пламенем:

2H2S + ЗО2 = 2Н2О + 2SO2 (при избытке кислорода),

2H2S + О2 = 2Н2О + 2S (при недостатке кислорода).

Смеси его с воздухом взрывоопасны в пределах от 4 до 45% С. в. (по объёму). Водный раствор С.в. (сероводородная вода, сероводородная к-та) при стоянии на воздухе постепенно мутнеет вследствие выделения серы. С. в. реагирует с большинством металлов и их окислами в присутствии влаги или при нагревании, образуя соответствующие сульфиды. С. в.- сильный восстановитель: галогены восстанавливаются им до соответствующих водородных соединений, H2SO4 - до SO2 и S:

H2SO4 + H2S = 2Н20 + S02 + S.

С. в. образуется при нагревании серы в токе водорода: H2 + S < => H2S. Равновесие этой реакции до 350 °С смещено вправо, а при повышении темп-ры сдвигается влево. Термическая диссоциация С. в. начинается с 400 °С и становится практически полной ок. 1700 °С.

В лаборатории С. в. получают действием разбавленных к-т на FeS: FeS + 2НС1 = FeCl2 + H2S. С. в. в пром. масштабах получают при очистке природных, нефтяных и коксовых газов (см. Сера). С. в.- один из важнейших реактивов, применяемых в хим. анализе. В пром-сти применяется гл. обр. для получения серы; в меньших масштабах - для произ-ва серной кислоты и в органич. синтезе. При бальнеотерапии используется как леч. средство.

С. в. весьма ядовит. Предельно допустимая концентрация в воздухе производственных помещений 0, 01 мг/л.

Отравления С. в. возможны при добыче и переработке многосернистых нефтей, изготовлении сернистых красителей, в производстве вискозного волокна, на кожевенных, сахарных заводах, при очистке и ремонте канализационной сети. Острые отравления возникают при концентрациях 0, 2-0, 3 мг/л, хронич.-0, 02 мг/л; концентрация выше 1 мг/л смертельна. Токсичность С. в. проявляется в его раздражающем действии на слизистые оболочки глаз и верхних дыхат. путей, угнетении тканевых дыхательных ферментов и др. При лёгких острых отравлениях развивается конъюнктивит, отёк роговицы, катар верхних дыхат. путей. При отравлениях ср. тяжести присоединяются симптомы поражения центр. нервной системы. В тяжёлых случаях возможны токсич. отёк лёгких, кома, а при молниеносных формах - паралич дыхания и сердечной деятельности. При хронич. интоксикациях развиваются функциональные нарушения нервной системы, упадок питания, малокровие, бронхит, дрожание пальцев и век, боли в мышцах и по ходу нервных стволов. Профилактика отравлений: борьба с загрязнением С. в. воздуха рабочей зоны, предварит. и периодич. мед. осмотры, использование средств индивидуальной защиты органов дыхания.

Лит.: Профессиональные болезни, 3 изд., М., 1973. И. К. Малина, А.А.Каспаров.

СЕРНИСТЫЙ ГАЗ, SO2, то же, что сернистый ангидрид.

СЕРНОБЫКИ, род парнокопытных животных подсемейства лошадиных антилоп; то же, что ориксы.

СЕРНОВАТИСТАЯ КИСЛОТА, Н2S2О3; то же, что тиосерная кислота.

СЕРНОВОДСК, бальнеологич. курорт в Сунженском р-не Чечено-Ингушской АССР, в 50 км к 3. от Грозного. Расположен на юж. склоне Сунженского хребта. Лето очень тёплое (ср. темп-pa июля 23 °С), зима мягкая (ср. темп-pa янв. -4 °С); осадков 500 мм в год. Леч. средства: минеральные источники, воду к-рых с хим. составом (источник " Серный" № 1)
[ris]

используют для ванн. Для питьевого лечения применяют воду источника " Содовый" с хим. составом
[ris]

Лечение заболеваний органов движения и опоры, сердечно-сосудистой и нервной систем, органов пищеварения, гинекологических, кожи. Санаторий, ванное здание.

СЕРНОВОДСК, посёлок гор. типа в Сергиевском р-не Куйбышевской обл. РСФСР. Расположен близ ж.-д. станции Серные Воды I (на ветке Кротовка -Серные Воды II), в 2 км от автомагистрали Куйбышев - Уфа и в 123 км к С.-В. от Куйбышева, с к-рым связан автобусным сообщением. Леспромхоз. Курорт Сергиевские Минеральные Воды.

СЕРНОКИСЛОТНАЯ ПРОМЫШЛЕННОСТЬ, см. в ст. Химическая промышленность.

СЕРНОКИСЛЫЕ СОЛИ, то же, что сульфаты.

СЕРНО-СОЛОВЬЕВИЧ Александр Александрович [15(27).7.1838, Петербург, - 4(16).8.1869, Женева], русский революционер. Брат Н. А. Серно-Соловьевича. Учился в Александровском лицее (1851-57). В 1861 вошёл в состав центра создававшегося об-ва " Земля и воля''. В 1862 выехал за границу, где оставался до конца жизни, приговорённый по " процессу 32-х'' (1862-65) к вечному изгнанию. Выражал взгляды левого крыла рус. революц. эмиграции, возглавляя т. н. " молодую эмиграцию''. В 1867 участвовал в издании первого собрания соч. Н. Г. Чернышевского (изд. М. Элпи-дина, Веве). В 1867 вступил в Женевскую секцию 1-го Интернационала. Переписывался с К. Марксом. С.-С., неизлечимо больной, покончил жизнь самоубийством.

Лит.: Л е м к е М., К биографии А. А. Серно-Соловьевича, в его кн.: Очерки освободительного движения " шестидесятых годов", СПБ, 1908; К о з ь м и н Б. П., Русская секция I Интернационала, М., 1957; Корочкин В. М., Русские корреспонденты К. Маркса, М., 1965.

Н. А. Серно-Соловьевч А.Н. Серов.

СЕРНО-СОЛОВЬЕВИЧ Николай Александрович [13(25).12.1834, Петербург, -14(26).2.1866, Иркутск], русский революционер, публицист. Род. в семье чиновника. Окончил Александровский лицей (1853), служил в Гос. канцелярии. В дек. 1859 вышел в отставку. В 1860 за границей установил дружеские отношения с А. И. Герценом и Н. П. Огарёвым, познакомился с Дж. Мадзини и П. Ж. Прудоном; начал сотрудничать в изданиях Вольной русской типографии в Лондоне. С нач. 1861 вошёл в круг ближайших соратников Н. Г. Чернышевского (сотрудником " Современника" он стал в 1860). Осенью 1861 - весной 1862 в Петербурге один из организаторов тайного революц. об-ва " Земля и воля", чл. его ЦК. По мнению большинства историков, он - автор " Ответа „Великоруссу ", одного из программных документов будущей " Земли и воли". Вёл работу по сплочению демократич. сил, участвовал в выработке программы, тактики и организац. принципов об-ва, способствовал развитию связей между петерб. и лондонским центрами рус. освободит. движения. С.-С. подверг уничтожающей критике реформу 1861; его брошюра " Окончательное решение крестьянского вопроса" (1861), изд. по цензурным условиям за границей, развивала идею возможности справедливого разрешения крест. проблемы лишь посредством нар. революции. Враждебность к крепостничеству соединялась у С.-С. с отрицат. отношением и к капиталистич. строю. Ему были близки идеи рус. общинного социализма. Философ-материалист С.-С. в понимании ист. процесса был идеалистом. Однако революц. демократизм С.-С. обусловил материалистич. тенденции в его воззрениях на общество (указания на антагонистич. характер противоречий между имущими и неимущими, приближение к науч. пониманию роли нар. масс как движущей силы развития общества). 7 июля 1862 арестован одновременно с Чернышевским и заключён в Петропавловскую крепость, где находился до июня 1865. В крепости продолжал лит. деятельность (работы по философии и экономич. вопросам, социологии и праву, ряд лит.-художеств. произв.). По " процессу 32-х'' С.-С. приговорён к " лишению всех прав состояния" и вечному поселению в Сибири. По пути в ссылку установил кон
такты с польск. революционерами и принял активное участие в организации Кругобайкалъского восстания 1866 в Сибири. В разгар его подготовки С.-С. погиб.

Соч.: Публицистика. Письма, М., 1963; Стихотворения, в кн.: Литературное наследство, т. 25-26, М., 1936.

Лит.: Лемке М., Очерки освободительного движения " шестидесятых годов", СПБ, 1908; Володарский И., Н. А. Серно-Соловьевич - выдающийся деятель русской революционной демократии, " Вопросы истории", 1946, № 10; его же, " Ответ ''Великоруссу" " и его автор, в сб.: Революционная ситуация в России в 1859 - 1861 гг., М., 1965; Романенко В., Мировоззрение Н. А. Соловьевича, М., 1954; Б о г а т о в В., Социологические взгляды Н. А. Серно-Соловьевича, М., 1961. И. Б. Володарский.

СЕРНУР, посёлок гор. типа, центр Сернурского р-на Марийской АССР. Расположен в 89 км к С.-В. от г. Йошкар-Ола. Узел автодорог. Торфопредприятие. Маслосырозавод, мясокомбинат, пивовар. з-д, льнозавод.

СЕРНЫЕ РУДЫ, природные минеральные образования, содержащие серу самородную в таких концентрациях, при к-рых технически возможно и экономически целесообразно её извлечение. Типы С. р. выделяются по составу вмещающих серу горных пород: известняковые -кальцитовые (св. 90% мировой добычи), кальцито-доломитовые, глинистые, гипсовые, опалитовые, кварцитовые. Гл. минералы, слагающие С. р.: сера самородная, кальцит, доломит, гипс, ангидрит, целестин, кварц, халцедон, опал, глинистые минералы, пирит, алунит. По структуре и текстуре руд, определяющим их технологич. свойства, выделяются тонковкрапленные, крупнокристаллич. и др. С. р., содержащие св. 25% серы, -богатые, 10-25% - средние, 5-10% -бедные. Попутные полезные компоненты С. р. (кроме серы) - известняки (отходы флотации, используемые для известкования почв), целестин, пирит, алунит; вредные - органич. вещества (битумы), As, Se.

Залежи С. р. бывают пластообразные, линзовидные, гнёздообразные простые и сложные (с прослоями породы); их мощность - от неск. десятков см до неск. десятков м. Гл. генетич. и пром. тип месторождений С. р.- инфильтрационно-метасоматич. по сульфатам осадочных толщ и кепроков соляных куполов. Наряду с С. р. важным источником для получения серы и её соединений служат также колчеданы, отходы (" хвосты") после обогащения медных и др. сульфидных руд, сероводород природных горючих газов, битуминозные песчаники, сернистые нефти, ангидрит и гипс, сернистые газы металлургич. и коксохимии, печей, к-рые все вместе носят собирательное назв.- серусодержащее сырьё.

Добыча серы из С. р. производится двумя способами -горнотехнологич. (10-20% мировой добычи) и геотехнологич. (90-80% мировой добычи). По первому из них С. р. добываются в карьерах или гораздо реже - в подземных горных выработках, затем обогащаются методом флотации с получением серного концентрата, из которого в специальных печах, котлах и автоклавах получают сырую, или " комовую", серу. Затем её очищают и получают рафинированную серу. При геотехнологическом способе добыча серы производится выплавлением её из С. р. на месте их залегания перегретой водой через буровые скважины (Фраига метод).

В скважине размещают три трубопровода: для подачи воды с температурой 165-170 0С, воздуха и транспортировки расплавленной серы на поверхность. В 1973 этим способом было добыто св. 10 млн. т серы в мире.

Мировые запасы самородной серы на начало 1973 оценивались в 871, 5 млн. т (без социалистич. стран). Большая часть С. р. (примерно 76%) сосредоточена в Ираке (335 млн. т), США (150 млн. т извлекаемых запасов), Чили (100 млн. т) и Мексике (80 млн. т). Крупные месторождения С. р. известны в Польше (Тар-нобжегское, Гжибовское и др.). В СССР месторождения С. р. имеются в Предкарпатье (Роздольское, Язовское и др.), в Куйбышевской обл. (Водинское, Каменнодольское), в Туркмении (Гаурдакское), на Камчатке (Малетойваямское).

Мировая добыча серы (без социалистич. стран) из С. р. составляла (1973) 15-16 млн. т, в т. ч. в США 9, 1 млн. т, в Мексике 0, 9 млн. т, в Ираке 0, 25 млн. т. В 1972 уд. вес самородной серы в общем производстве серы составил ок. 27% (без социалистич. стран); серы, извлекаемой из природного газа и нефти, 38%, из колчеданов- 19%; из др. видов серусодержащего сырья получено 16% серы.

Лит.: Геология месторождений самородной серы, М., 1969; Вулканические серные месторождения и некоторые проблемы гидротермального рудообразования, М., 1971; Генезис месторождений самородной серы и перспективы их поисков, М., 1974; Арене В. Ж., Разработка месторождений самородной серы методом подземной выплавки, М., 1973.

А. С. Соколов.

СЕРНЫЕ УДОБРЕНИЯ, соединения, содержащие серу и используемые как удобрения. В качестве С. у. применяют сульфаты калия, магния, аммония, фос-фогипс и др., а также породы с небольшим содержанием серы.

Эффективны для крестоцветных, бобовых, сложноцветных, к-рые потребляют довольно много серы. С. у. положительно действуют и как косвенные удобрения: частично нейтрализуют щёлочность почвы, повышают усвояемость труднорастворимых фосфатов и т. п. Вносят их осенью под вспашку или весной под перепашку; доза 30-50 кг/га SO3.

СЕРНЫЙ АНГИДРИД, трёхокись серы, оксид серы (VI) SO3. Твёрдый С. а. существует в а -, В -, Y - и б -формах, имеющих t пл соответственно 16, 8, 32, 5, 62, 3 и 95 °С и различающихся по форме кристаллов и степени полимеризации SO3. Неустойчивая а -форма образуется при затвердевании жидкого С. а. и постепенно переходит в присутствии влаги в устойчивую В -форму - шелковистые кристаллы, похожие на асбест. Обратно В -фор-ма может быть превращена в а -форму только через газообразное состояние SO3: при нормальном давлении и 44, 7 0С газообразный SO3 превращается в жидкость, к-рая, затвердевая при 16, 8 °С, образует а -SO3. Взаимный переход др. модификаций происходит очень медленно.

Критич. темп-pa С. а. 218, 3 0С, критич. давление 83, 8 атм. В парах SO3 мономолекулярен. Его термич. диссоциация на SO2 и О2 начинается ок. 450 0С и при 1200 °С становится практически полной. SO3 растворяется в воде с образованием H2SO4; взаимодействует с основными окислами и основаниями. Будучи сильным окислителем, SO3 окисляет серу, фосфор, углеводороды, восстанавливаясь до SO2.

В лаборатории С. а. получают прокаливанием Fe2(SO4)3 или действием избытка Р2О5 на концентрированную H2SO4. Пром. способ получения SO3 заключается в каталитич. окислении SO2 (см. Серная кислота).

С. а. применяют как сульфирующий агент в произ-ве многих органич. продуктов, используют для приготовления олеума, безводной HNO3 и др.

И.K. Малина.

СЕРНЫЙ ЭФИР, одно из назв. этилового эфира' возникло в связи с основным способом его получения (действием серной к-ты на этиловый спирт).

СЕРОБАКТЕРИИ, тиобактерии, микроорганизмы, окисляющие восстановленные соединения серы. Изучение С. послужило С. Н. Виноградскому основанием для установления хемосинтеза (1887). К С. относятся фотосинтезирующие пурпурные и зелёные бактерии, окисляющие сероводород анаэробно на свету; тионовые бактерии; собственно С.- бесцветные микроорганизмы, в клетках к-рых содержатся включения серы. С. в массе развиваются на поверхности сероводородного ила, где идёт восстановление сульфатов. Чаще всего встречаются нитчатые С. (Beggiatoa, Thiothrix) и одноклеточные (Thiospira, Thiovulum, Масromonas).


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.016 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал