Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Технологии искусственного интеллекта. Представление знаний нейронными сетями






 

Искусственные нейронные сети (ИНС) — устройства параллельных вычислений, состоящие из множества взаимодействующих простых процессоров (обрабатывающих элементов).

Искусственная нейронная сеть может рассматриваться как направленный граф с взвешенными связями, в котором искусственные нейроны являются узлами.

Матрицу весов связей обученной нейронной сети можно отнести к эвристическим моделям представления знаний.

По архитектуре связей ИНС могут быть сгруппированы в два класса: сети прямого распространения, в которых графы не имеют петель, и рекуррентные сети, или сети с обратными связями.

Нейронные сети различают по структуре сети (связей между нейронами), особенностям модели нейрона, особенностям обучения сети.

По структуре нейронные сети можно разделить на неполносвязные (или слоистые) и полносвязные, со случайными и регулярными связями, с симметричными и несимметричными связями.

По используемым на входах и выходах сигналам нейронные сети можно разделить на аналоговые и бинарные.

По моделированию времени нейронные сети подразделяются на сети с непрерывным и дискретным временем.

По организации обучения разделяют обучение нейронных сетей с учителем (supervised neural networks), без учителя (nonsupervised).

По особенностям модели нейрона различают нейроны с разными нелинейными функциями: пороговой, экспоненциальной сигмоидой, рациональной сигмоидой, гиперболическим тангенсом.

В настоящее время нейронные сети применяются для решения многих неформализуемых или трудно формализуемых задач распознавания, прогнозирования, диагностики.

Нейронные сети можно использовать при следующих условиях:

1. Если задачу может решать человек.

2. Если при решении задачи можно выделить множество входных факторов (сигналов, признаков, данных и т.п.) и множество выходных факторов.

3. Если изменения входных факторов приводит к изменению выходных.

При применении нейронных сетей необходимо решить следующие задачи:

1. Постановка задачи, пригодной для решения с помощью нейронной сети.

2. Выбор модели ИНС.

3. Подготовка исходных данных для обучения ИНС.

4. Обучение ИНС.

5. Решение задачи с помощью обученной ИНС

Кроме того, иногда нужен еще один этап – интерпретация решения, полученного нейронной сетью.

Несмотря на большое разнообразие вариантов нейронных сетей, все они имеют общие черты. Так, все они, как и мозг человека, состоят из большого числа однотипных элементов — нейронов, которые имитируют нейроны головного мозга, связанных между собой.

Биологический нейрон моделируется как устройство, имеющее несколько входов и один выход. Каждому входу ставится в соответствие некоторый весовой коэффициент (w), характеризующий пропускную способность канала и оценивающий степень влияния сигнала с этого входа на сигнал на выходе. Обрабатываемые нейроном сигналы могут быть аналоговыми или цифровыми (1 или 0). В теле нейрона происходит взвешенное суммирование входных возбуждений, и далее это значение является аргументом активационной функции нейрона.

Состояние нейрона определяется по формуле

,

где n — число входов нейрона, xi — значение i-го входа нейрона, wi — вес i-го синапса.

Затем определяется значение аксона нейрона по формуле

Y=f(S),

где f — некоторая функция, которая называется активационной. Наиболее часто в качестве активационной функции используется так называемый сигмоид, который имеет следующий вид:

.

Основное достоинство этой функции в том, что она дифференцируема на всей оси абсцисс и имеет очень простую производную:

f '(x) = a f (x) (1 - f (x))

При уменьшении параметра a сигмоид становится более пологим, вырождаясь в горизонтальную линию на уровне 0, 5 при a =0. При увеличении a сигмоид все больше приближается к функции единичного скачка.

Будучи соединенными определенным образом, нейроны образуют нейронную сеть. Среди различных структур нейронных сетей одной из наиболее известных является многослойная структура, в которой каждый нейрон произвольного слоя связан со всеми аксонами нейронов предыдущего слоя или, в случае первого слоя, со всеми входами НС. Такие нейронные сети называются полносвязными.

Под обучением сети понимается процесс адаптации сети к предъявляемым эталонным образцам путем модификации (в соответствии с тем или иным алгоритмом) весовых коэффициентов связей между нейронами.

Важно отметить, что вся информация, которую нейронная сеть имеет о задаче, содержится в наборе примеров. Поэтому качество обучения сети напрямую зависит от количества примеров в обучающей выборке, а также от того, насколько полно эти примеры описывают данную задачу. Так, например, бессмысленно использовать нейросеть для предсказания финансового кризиса, если в обучающей выборке кризисов не представлено. Считается, что для полноценной тренировки требуется хотя бы несколько десятков (а лучше сотен) примеров.

Существуют два концептуальных подхода к обучению нейронных сетей: обучение с учителем и обучение без учителя.

Обучение нейронной сети с учителем предполагает, что для каждого входного вектора из обучающего множества существует требуемое значение выходного вектора, называемого целевым. Эти вектора образуют обучающую пару. Веса сети изменяют до тех пор, пока для каждого входного вектора не будет получен приемлемый уровень отклонения выходного вектора от целевого.

Обучение нейронной сети без учителя является намного более правдоподобной моделью обучения с точки зрения биологических корней искусственных нейронных сетей. Обучающее множество состоит лишь из входных векторов. Алгоритм обучения нейронной сети подстраивает веса сети так, чтобы получались согласованные выходные векторы, т.е. чтобы предъявление достаточно близких входных векторов давало одинаковые выходы.

Процесс обучения нейронной сети предполагает следующую последовательность событий:

1. В нейронную сеть поступают стимулы из внешней среды.

2. В результате первого пункта изменяются свободные параметры нейронной сети.

3. После изменения внутренней структуры нейронная сеть отвечает на возбуждения уже иным образом.

Вышеуказанный список четких правил решения проблемы обучения нейронной сети называется алгоритмом обучения. Несложно догадаться, что не существует универсального алгоритма обучения, подходящего для всех архитектур нейронных сетей. Существует лишь набор средств, представленный множеством алгоритмов обучения, каждый из которых имеет свои достоинства. Алгоритмы обучения отличаются друг от друга способом настройки синаптических весов нейронов.

В общем случае задача обучения нейронной сети сводится к нахождению некой функциональной зависимости Y=F(X) где X — входной, а Y — выходной векторы. В общем случае такая задача, при ограниченном наборе входных данных имеет бесконечное множество решений. Для ограничения пространства поиска при обучении ставится задача минимизации целевой функции ошибки нейронной сети, которая находится по методу наименьших квадратов:

,

где yj — значение j-го выхода нейронной сети, dj — целевое значение j-го выхода, p — число нейронов в выходном слое.

После многократного предъявления примеров веса сети стабилизируются, причем сеть дает правильные ответы на все (или почти все) примеры из базы данных. В таком случае говорят, что нейронная сеть обучена. В программных реализациях можно видеть, что в процессе обучения величина ошибки (сумма квадратов ошибок по всем выходам) постепенно уменьшается. Когда величина ошибки достигает нуля или приемлемого малого уровня, обучение останавливают, а полученную сеть считают готовой к применению на новых данных.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.008 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал