Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Эволюция физики: Развитие идей от первоначальных понятий до теории относительности и квантов.






(М., 1965)

Наши новые положения суть:

1. Скорость света в вакууме одинакова во всех системах координат, движущихся прямолинейно и равномерно друг относительно друга.

2. Законы природы одинаковы во всех системах координат, движущихся прямолинейно и равномерно друг относительно друга.

Теория относительности начинается с этих двух положений. С этого времени мы не будем применять классического преобразования, так как знаем, что оно противоречит исходным положениям.

В данном случае, как и всегда в науке, важно отказаться от глубоко укоренившихся, часто некритически повторяемых предрассудков. Так как мы видели, что изменения обоих положений приводят к противоречию с экспериментом, то мы должны иметь смелость твердо установить их справедливость и напасть на один возможно слабый пункт, а именно на способ, которым координаты и скорости преобразуются от одной системы координат к другой. Мы хотим сделать выводы из этих двух положений, посмотреть, где и как эти положения противоречат классическому преобразованию, и найти физический смысл полученных результатов.

Можно еще раз использовать пример с движущейся комнатой и наблюдателями внутри и вне её. Пусть световой сигнал опять излучается из центра комнаты, и вновь мы спрашиваем обоих людей, что они обнаружат, допустив только два вышеуказанных принципа и забыв то, что было предварительно сказано о среде, сквозь которую проходит свет. Приведем их ответ:

Внутренний наблюдатель. Световой сигнал, идущий от центра комнаты, достигнет стен одновременно, так как все стены одинаково отстоят от источника света, а скорость света одинакова во всех направлениях.

Внешний наблюдатель. В моей системе координат скорость света совершенно такая же, как и в системе координат наблюдателя, движущегося вместе с комнатой. Мне нет дела до того, движется ли источник света в моей системе или нет, так как его движение не влияет на скорость света. То, что я вижу, это - световой сигнал, идущий с постоянной скоростью, одинаковой во всех направлениях. Одна из стен стремится убежать от светового сигнала, а другая - приблизиться к нему. Поэтому убегающая сторона будет достигнута световым сигналом немного позднее, чем приближающаяся. Хотя эта разность времен прибытия светового будет очень незначительной, если скорость комнаты мала сравнительно со скоростью света, тем не менее световой сигнал не достигает обеих противоположных стен, расположенных перпендикулярно к направлению движения, совершенно одновременно.

Сравнивая предсказания обоих наблюдателей, мы обнаруживаем крайне изумительный результат, который явно противоречит несомненно хорошо обоснованным понятиям классической физики. Оба события - достижение стен двум световыми лучами - одновременны для наблюдателя внутри и неодновременны для наблюдателя вне комнаты. В классической физике у нас были одни часы, одно течение времени для всех наблюдателей во всех системах. Время, а стало быть, и такие слова, как " одновременно", " ранее", " позднее", имели абсолютное значение, не зависимое от какой-либо системы. Два события, происходящие в одно и то же время в одной системе координат, необходимо происходили одновременно во всех системах координат.

Положение, указанных выше, т.е. теория относительности, вынуждают нас отказаться от этого взгляда. Мы описали два события, которые происходят одновременно в одной системе координат, но в разное время в другой системе. Наша задача - понять это следствие, понять смысл предложения: два события, одновременные в одной системе координат, не могут быть одновременны в другой системе".

Что мы обозначаем словами: " два одновременных события в одной системе координат"? Интуитивно каждый человек считает, что он понимает смысл этого предложения. Но будем осторожными и постараемся дать строгие определения, так как мы знаем, как опасно переоценивать ситуацию. Ответим сначала на простой вопрос.

Что такое часы?

Примитивное субъективное чувство течения времени позволяет нам упорядочить наши впечатления, судить о том, что одно событие происходит раньше, другое позднее. Но чтобы показать, что промежуток времени между двумя событиями равен десяти секундам, нужны часы. Благодаря применению часов понятие времени становится объективным. В качестве часов может быть использовано любое физическое явление, если только оно может быть повторено столько раз, сколько необходимо. Если мы возьмем интервал между началом и концом такого события за единицу времени, то любые интервалы времени мы можем измерить повторением этого физического процесса. Все часы, от простых песочных до наиболее совершенных, основаны на этой идее. При пользовании песочными часами единицей времени будет являться интервал, в течении которого песок высыпается из верхнего стаканчика в нижний. Тот же физический процесс может быть повторен перевертыванием стакана.

Пусть в двух отдаленных друг от друга точках пространства находится двое идеально идущих часов, точно показывающих одинаковое время. Это положение будет справедливым, несмотря на ту осторожность, с которой мы его проверяем. Но что это в действительности означает? Как можем мы удостовериться, что отдаленные друг от друга часы всегда показывают одинаковое время? Можно использовать один из возможных методов - телевидение. Легко понять, что телевидение берется как пример, само по себе оно не существенно для наших доводов. Я мог бы стоять около одних часов и смотреть на изображение других часов на экране телевизора. Тогда я мог бы судить, показывают ли часы одновременно одинаковое время или нет. Но это не было бы хорошим доказательством. Изображение в телевизоре передается электромагнитными волнами, следовательно, распространяется со скоростью света. На экране телевизора я вижу изображение, посланное некоторое очень короткое время тому назад, в то время как на часах, стоящих возле меня, я вижу то, что имеет место в настоящий момент. Эту трудность легко преодолеть. Для этого нужно рассмотреть изображения обоих часов в точке, одинаково отстоящей от каждых из них, т.е. рассмотреть их в точке, лежащей на середине расстояния между часами. Тогда, если сигналы посланы одновременно, они достигнут меня в один и тот же момент. Если двое хороших часов, наблюдаемых в точке, находящейся посередине между ними, показывают одинаковое время, то они вполне подходят для указания времени событий в двух отдаленных точках.

В механике мы употребляли только одни часы. Но это было не очень удобно, потому что мы должны были производить все изменения вблизи часов. Смотря на уделенные от нас часы, например, с помощью телевизора, мы всегда должны помнить следующее: то, что мы видим теперь, в действительности произошло раньше, подобно тому, как, рассматривая заход солнца, мы отмечаем это событие спустя восемь минут после того, как оно имело место. Во все показания часов мы должны вносить поправки, соответствующие нашему расстоянию от часов.

Поэтому неудобно иметь только одни часы. Однако теперь, поскольку мы знаем, как проверить, показывают ли двое, или вообще несколько часов одновременно одно и то же время, и идя тем же самым путем, мы легко можем вообразить себе в данной системе координат столько часов, сколько нам хочется.

Каждые из них помогут нам определить время событий, происходящих в непосредственном соседстве с ними. Все часы находятся в покое относительно системы координат. Они являются " хорошими" часами; они синхронизированы, что означает, что часы одновременно показывают одинаковое время.

В наше расстановке часов нет ничего удивительного или странного. Вместо одних - единственных часов мы применяем теперь много синхронизированных часов и поэтому можем легко проверить, одновременны ли два отдаленных события в данной системе координат или нет. Они одновременны, если синхронизированные часы вблизи них показывают одинаковое время в момент, когда происходят события. Теперь утверждение, что одно отдаленное событие происходит раньше другого, имеет определенный смысл. Его можно проверить с помощью синхронизированных часов, покоящихся в нашей системе координат.

Все это находится в согласии с классической физикой и не вызывает противоречий с классическим преобразованием.

Для определения одновременности событий часы синхронизируются с помощью сигналов. В наших рассуждениях существенно то, что сигналы передаются со скоростью света, со скоростью, которая играет такую фундаментальную роль в теории относительности.

Так как мы хотим заняться важной проблемой о двух системах координат, движущихся прямолинейно и равномерно относительно друг друга, то мы должны рассмотреть два стержня, снабженных часами. В каждой из обеих систем, движущихся друг относительно друга, наблюдатель имеет теперь свой собственный масштаб со своим собственным набором часов, жестко связанным с масштабом.

При измерениях в классической механике мы употребляли одно часы во всех системах координат. Теперь мы имеем много часов в каждой системе координат. Это различие не существенно. Одни часы были достаточны, но никто не может возражать против употребления многих часов, пока они ведет себя как хорошо синхронизированные часы.

Теперь мы приближаемся к существенному пункту, показывающему, где классическое преобразование противоречит теории относительности. Что происходит, когда двое часов движутся прямолинейно и одновременно друг относительно друга? Физик, держащийся классических взглядов, ответил бы: ничего; их ритм остается одинаковым, и мы можем употреблять для показания времени движущиеся часы так же, как и покоящиеся. Таким образом, согласно классической физике два события, одновременные в одной системе координат, будут одновременны в любой другой системе.

Но это не единственный возможный ответ. Мы можем столь же легко представить себе движущиеся часы, имеющие ритм, отличный от ритма покоящихся часов. Обсудим теперь эту возможность, не решая пока вопроса о том, изменяют ли на самом деле часы свой ритм при движении или нет. Что означает утверждение, что движущиеся часы изменяют свой ритм? Предположим ради простоты, что в верхней системе координат у нас только одни часы, а в нижней много. У всех часов одинаковый механизм и нижние часы синхронизированы, т.е. они показывают одновременно одинаковое время. Мы показали три последовательных положения обеих систем, движущихся друг относительно друга. На первом рисунке положения стрелок верхних и нижних часов ради удобства взяты одинаковыми; так мы их поставили сами. Все часы показывают одинаковое время. На втором рисунке мы видим относительные положения обеих систем спустя некоторое время. Все часы в нижней системе показывают одинаковое время, но часы в верхней системе вышли из общего ритма. Их ритм изменился, и время отличается вследствие того, что часы движутся относительно нижней системы. На третьем рисунке мы видим, что различие в положении стрелок со временем увеличилось. Наблюдатель, покоящийся в нижней системе координат, нашел бы, что движущиеся часы изменили свой ритм. Конечно, тот же результат получился бы, если бы часы двигались по отношению к наблюдателю, покоящемуся в верхней системе координат; в этом случае в верхней системе должно было бы быть много часов, а в нижней только одни. Закон природы должен быть одинаков в обеих системах, движущихся друг относительно друга.

В классической механике молчаливо предполагалось, что движущиеся часы не изменяют своего ритма. Это казалось столь очевидным, что едва ли было достойно упоминания. Но ничто не должно считаться слишком очевидным; если мы действительно желаем быть осторожными, мы должны подвергать анализу все положения, принимаемые в физике.

Нельзя считать какое-либо положение бессмысленным только потому, что оно отличается от положения классической физики. Мы можем легко представить себе, что движущиеся часы изменяют свой ритм, если закон этого изменения одинаков для всех инерциальных систем.

Еще один пример. Возьмем метровый стержень; это значит, что длина стержня - один метр, пока он находится в покоящейся системе координат. Пусть он движется прямолинейно и равномерно, скользя вдоль масштаба, представляющего систему координат. Будет ли его длина и в этом случае равна одному метру? Мы должны знать заранее, как определить его длину. Пока стержень был в покое, его концы совпадали с нанесенными на масштабе отметками, расстояние между которыми равнялось одному метру. Из этого мы заключили: длина покоящегося стержня равна одному метру. Как мы измеряем длину этого стержня во время движения? Это можно сделать следующим образом. В данный момент два наблюдателя делают одновременно моментальные фотоснимки начала движущегося стержня и его конца. Поскольку снимки берутся одновременные, мы можем сравнить, с какими отметками совпадают начало и конец движущегося стержня. Таким путем мы определим его длину. Нужно, чтобы два наблюдателя отметили одновременные события, происходящие в различных частях данной системы. Нет никаких оснований считать, что результат таких измерений будет таким же, как и в случае, когда отрезок покоится. Поскольку фотографии должны быть сделаны одновременно, а одновременность, как мы знаем, является относительным понятием, зависящим от системы координат, то кажется вполне возможным, что результаты этих измерений будут различными в различных системах, движущихся друг относительно друга.

Мы легко можем представить себе, что не только движущиеся часы изменяют свой ритм, но и движущийся стрежень тоже изменяет свою длину, если законы изменений одинаковы для всех инерциальных систем координат.

Мы лишь обсуждали некоторые новые возможности, не приводя каких-либо оправданий в пользу их принятия.

Мы помним: скорость света одинакова во всех инерциальных системах координат. Этот факт несовместим с классическим преобразованием. Круг должен быть где-то разорван. Нельзя ли это сделать как раз здесь? Не можем ли мы предположить, что имеют место такие изменения в ритме движущихся часов и в длине движущегося стержня, что постоянство скорости света будет следовать непосредственно из этих предположений? В самом деле, можем! Здесь впервые теория относительности и классическая физика радикально расходятся. Наш довод может быть сформулирован иначе: если скорость света одинакова во всех системах, то движущиеся стержни должны изменять свою длину, движущиеся часы свой ритм, а законы, управляющие этими изменениями, являются строго определенными.

Во всем этом нет ничего таинственного или неразумного. В классической физике всегда предполагалось, что часы и в движении, и в покое имеют одинаковый ритм, что масштабы и в движении, и в покое имеют одинаковую длину. Если скорость света одинакова во всех системах координат, то мы должны пожертвовать этим положением. Трудно отделаться от глубоко укоренившихся предрассудков, но другого пути нет. С точки зрения теории относительности старые понятия кажутся произвольными. Почему надо верить в неизменяемое расстояние? Время определяется часами, пространственные координаты масштабами, и результат этих определений может зависеть от поведения этих часов и масштабов, когда они находятся в движении. Нет оснований считать, что они будут вести себя так, как нам этого хотелось бы. Косвенное наблюдение, а именно, наблюдение явлений электромагнитного поля показывает, что движущиеся часы изменяют свой ритм, а масштаб - длину, в то время как, основываясь на механических явлениях, мы не думали, чтобы это имело место. Мы должны принять понятие относительного времени в каждой системе координат, ибо это наилучший выход из трудностей. Дальнейший научный успех, достигнутый теорией относительности, показывает, что новый взгляд не должен рассматриваться как печальная необходимость, ибо успехи теории относительности оказались весьма значительными.

До сих пор мы старались показать, что привело к основным положениям теории относительности и как теория относительности вынуждала нас пересматривать и изменять классическое преобразование, по-новому трактуя понятия времени и пространства. Наша цель - указать идеи, образующие основу новых физических и философских взглядов. Эти идеи просты; но в той форме, в которой они здесь сформулированы, они недостаточно для того, чтобы получить выводы не только качественные, но и количественные. Мы опять должны применить наш старый метод объяснения только принципиальных идей и формулировки некоторых выводов без доказательства.

Чтобы сделать ясным различие между взглядом старого физика (назовем его С), верящего в классическое преобразование, и взглядом нового физика (назовем его Н), признающего теорию относительности, вообразим между ними следующий диалог.

С. Я верю в принцип относительности Галилея в механике, ибо я знаю, что законы механики одинаковы в двух системах, движущихся прямолинейно и равномерно друг относительно друга, или, другими словами, что эти законы инвариантны относительно классического преобразования.

Н. Но принцип относительности следует применять ко всем событиям внешнего мира. Не только законы механики, но и все законы природы должны быть одинаковы в системах, движущихся прямолинейно и равномерно друг относительно друга.

С. Но как все законы природы могут оказаться одинаковыми в системах, движущихся друг относительно друга? Ведь уравнения поля, т.е. уравнения Максвелла, неинвариантны относительно классического преобразования. Это ясно обнаруживается н примере скорости света. Согласно классическому преобразованию эта скорость не была бы одинаковой в двух системах, движущихся друг относительно друга.

Это только показывает, что классическое преобразование нельзя применять, что связь между двумя системами координат должны быть иной, и что мы не можем связывать координаты и скорости в разных системах координат так, как это сделано в этих законах преобразования. Мы должны заменить их новыми законами, выведя последние из основных положений теории относительности. Не будем заботиться о математическом выражении этих новых законов преобразования и удовлетворимся тем, что они отличны от классического. Мы назовем их кратко преобразованиями Лоренца. Можно показать, что уравнения Максвелла, т.е. законы поля, инвариантны, по отношению к преобразованиям Лоренца, подобно тому, как законы механики инвариантны по отношению к классическим преобразованиям. Вспомним, как обстояло дело в классической физике. Мы имели законы преобразования для координат, законы преобразования для скоростей, но законы механики были одинаковы для обеих систем координат, движущихся прямолинейно и равномерно друг относительно друга. У нас были законы преобразования для пространства, но не для времени, потому что время было одинаково во всех системах координат. Однако, здесь, в теории относительности, оно различно. Здесь мы имеем законы преобразования пространства, времени и скоростей, отличающиеся от классических законов. Но законы природы опять должны быть одинаковы во всех системах координат, движущихся прямолинейно и равномерно друг относительно друга. Законы природы должны быть инвариантны, но не по отношению к классическим преобразованиям, как прежде, а по отношению к новому типу преобразований - так называемым преобразованиям Лоренца. Во всех инерциальных системах справедливы те же самые законы, а переход от одной системы к другой дается преобразованиями Лоренца.

С. Я верю вам, но мне интересно было бы знать различие между преобразованиями классическими и преобразованиями Лоренца.

Н. Ответить на ваш вопрос лучше следующим образом. Сошлемся на некоторые характерные черты классических преобразований, и я постараюсь объяснить, сохраняются ли они в преобразованиях Лоренца, и если нет, то как они изменяются.

С. Если что-то происходит в какой-то точке пространства в некоторый момент времени в моей системе координат, то наблюдатель, находящийся в другой системе координат, движущейся прямолинейно и равномерно относительно моей, отмечает другое число, отмечающее положение места, где происходит событие, но, конечно, то же самое время. Мы употребляем одни и те же часы во всех системах, независимо от того, движутся ли они или нет. Это и с вашей точки зрения справедливо?

Н. О, нет. Каждая система координат должна быть снабжена собственными часами, покоящимися в ней, так как движение изменяет ритм часов. Два наблюдателя, находящиеся в различных системах координат, отмечают не только различные числа, определяющие положения, но и различные числа, определяющие время, в которое происходит это событие.

С. Это означает, что время не является больше инвариантом. В классических преобразованиях время всегда одно и то же во всех системах. В преобразованиях Лоренца они изменяется и ведет себя аналогично координате в старых преобразованиях. Интересно знать, как обстоит дело с длиной. Согласно классической механике твердый стержень сохраняет свою длину как в движении, так и в покое. Верно ли это теперь?

Н. Неверно. В самом деле, из преобразований Лоренца следует, что движущийся стержень сокращается в направлении движения, и сокращение тем больше, чем больше скорость. Чем быстрее движется стержень, тем короче он оказывается. Но такое сокращение происходит только в направлении движения. На рисунке вы видите стержень, который сокращается до половины своей первоначальной длины, когда он движется со скоростью, приближающейся к 0, 9 скорости света. Однако, в направлении, перпендикулярном движению, сокращения нет.

С. Это означает, что ритм движущихся часов и длина движущихся стержней зависит от скорости. Но каким образом?

Н. Изменение становится более заметным по мере возрастания скорости. Из преобразований Лоренца следует, что стержень сократится до нуля, если его скорость достигнет скорости света. Аналогично этому ритм движущихся часов замедляется сравнительно с часами, мимо которых они проходят вдоль стержня; часы совершенно остановились бы, если бы они могли двигаться со скоростью света.

С. Это кажется противоречащим всему нашему опыту. Мы знаем, что вагон не становится короче, когда он в движении, и мы знаем также, что машинист может сравнить свои " хорошие" часы с часами, мимо которых он проезжает, находя, что они хорошо согласованы друг с другом, вопреки вашему утверждению.

Н. Это, конечно, верно. Но все скорости в механике очень малы сравнительно со скоростью света, поэтому нелепо применять теорию относительности к этим явлениям. Каждый машинист может спокойно применять классическую физику, даже если он увеличит свою скорость в сотни тысяч раз. Мы могли бы ожидать несогласия между экспериментом и классическими преобразованиями только в случае скоростей, приближающихся к скорости света. Справедливость преобразований Лоренца может быть проверена лишь при очень больших скоростях.

С. Но имеется и другая трудность. Согласно механике я могу вообразить тела, обладающие скоростями, даже большими, чем скорость света. Тело, движущееся со скоростью света относительно плывущего корабля, движется со скоростью, большей, чем скорость света, относительно берега. Что произойдет со стержнем, который сократится до нуля, когда его скорость сравнялась со скоростью света? Едва ли мы можем ожидать отрицательной длины, если скорость стержня больше скорости света.

В действительности нет никаких оснований для такой иронии! С точки зрения теории относительности материальные тела не могут иметь скорости, большей, чем скорость света. Скорость света образует верхний предел скоростей для всех материальных тел. Если скорость тела относительно корабля равна скорости света, то и относительно берега она будет равна скорости света. Простой механический закон сложения и вычитания скоростей больше несправедлив или, более точно, справедлив лишь приближенно для малых скоростей, но не для скоростей, близких к скорости света. Число, выражающее скорость света, явно входит в преобразования Лоренца и играет роль предельного случая, подобно бесконечной скорости в классической механике. Эта более общая теория не противоречит классическим преобразованиям и классической механике. Наоборот, к старым понятиям мы возвращаемся, как к предельному случаю, когда скорости малы. С точки зрения новой теории ясно, в каких случаях справедлива классическая физика и где лежат ее пределы. Было бы нелепо применять теорию относительности к движению автомобилей, пароходов и поездов, как нелепо употреблять счетную машину там, где вполне достаточна таблица умножения.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.01 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал