Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Средняя гармоническая. Расчет средней гармонической связан с двумя причинами:






Расчет средней гармонической связан с двумя причинами:

Не всегда возможно рассчитать среднюю арифметическую на основе имеющихся данных.
Расчет средней гармонической проводить более удобно.
Расчет простой средней гармонической: Расчет средней гармонической взвешенной: Такой расчет имеет определенные трудности, которые заключаются в том, что не всегда ясно можно трактовать условие поставленной задачи. Поэтому перед тем, как приступать к расчету средней, необходимо разобраться в экономическом смысле данных, которыми вы располагаете.

Базисный
Отчетный

Фонд з/п
Среднеспис. з/п
Среднеспис. з/п
Среднеспис. численность

xf
х
x
f

Средняя гармоническая
Средняя арифметическая

 

Общая из индивидуальных средних

Рассчитывается по следующей формуле:

Степенные средние

Те средние величины, которые мы записали, относятся к степенным средним. В наиболее общем виде степенная средняя записывается следующим образом: В зависимости от k и образуются разные виды средних.

Степень k
Вид средней
Формула расчета

k = 1
Арифметическая


k = 2
Квадратическая


k = 0
Геометрическая


k = -1
Гармоническая

 

Правило мажорантности:

Структурные средние

Величина средней определяется всеми значениями признака, встречающимися в данном ряду распределения. Различают такие структурные средние, как:

мода
медиана
квартиль
дециль
перцентиль
Мода

Это значение признака, которое встречается в ряду распределения чаще, чем другие его значения.

В дискретном ряду распределения значения моды определяются визуально. Если же ряд распределения задан как интервальный, то значение моды рассчитывается по следующей формуле:

нижняя граница модального интервала,
величина модального интервала,
частота (вес) интервала, предшествующего модальному,
частота модального интервала,
частота интервала, следующего за модальным.
Медиана

Это центральное значение признака, им обладает центральный член ранжированного ряда.

Прежде всего определяется порядковый номер медианы по формуле и строят ряд накопленных частот. Накопленной частоте, которая равна порядковому номеру медианы или первая его превышает, в дискретном вариационном ряду соответствует значение медианы, а в интервальном – медианный интервал.

Для интервального ряда медиана рассчитывается по следующей формуле:

нижняя граница медианного интервала,
величина медианного интервала,
сумма частот (весов) ряда,
сумма накопленных частот (весов) в интервале, предшествующем медианному,
частота медианного интервала.
Квартиль

Первый квартиль вычисляется по формуле:

нижняя граница квартильного интервала,
величина квартильного интервала,
номер квартильного признака,
сумма накопленных частот (весов) в интервалах, предшествующих квартильному,
частота квартильного интервала.
Аналогично рассчитывается третий квартиль. Второй же квартиль равен медиане.

Дециль

Рассчитывается по аналогии с расчетом квартиля. Можно найти девять децилей.

Средняя должна исчисляться не просто тогда, когда есть вариация признака, а тогда, когда мы располагаем качественно однородным вариационным рядом. Среднюю как обобщающую характеристику нельзя применять к таким совокупностям, отдельные части которых подчиняются различным законам распределения (или) развития в отношении величины распределяемого признака.

Показатели вариации

Необходимость расчета показателей вариации Средняя представляет собой обобщающую статистическую характеристику, в которой получает количественное выражение типичный уровень признака, которым обладают члены изучаемой совокупности. Но одной средней нельзя отобразить все характерные черты статистического распределения. Возможны случаи совпадения средних арифметических при разном характере распределения.

Показатели вариации используются для характеристики и упорядочения статистических совокупностей.

Абсолютные показатели вариации

Для измерения размера вариации используются следующие абсолютные показатели: размах, среднее линейное отклонение, дисперсия, среднее квадратическое отклонение.

Размах

Величина его целиком зависит от случайности распределения крайних членов ряда, и значение подавляющего большинства членов ряда не учитывается, в то время как вариация связана с каждым значением члена ряда.

Такие показатели, которые представляют собой средние, полученные из отклонений индивидуальных значений признака от их средней величины, лишены этого недостатка.

Между индивидуальными отклонениями от средней и колеблемостью конкретного признака существует прямая зависимость. Чем сильнее колеблемость, тем больше абсолютные размеры отклонений от средней.

Дисперсия

Среднее линейное отклонение

Среднее квадратическое отклонение

Дисперсию можно подсчитать и по следующей формуле: По этой формуле ленче считать дисперсию, когда имеешь дело с дискретным рядом распределения.

Годовой удой от одной коровы
Середина интервала
Число коров






до 2-х
1, 5
40
6
-1, 3
5, 2
1, 69
6, 76

2-3
2, 5
20
5
-0, 3
0, 6
0, 09
0, 18

3-4
3, 5
20
7
+0, 7
1, 4
0, 49
, 98

4-5
4, 5
10
4, 5
+1, 7
1, 7
2, 89
2, 89

5 и более
5, 5
10
5, 5
+2, 7
2, 7
7, 29
7, 29

Сумма


28

11, 6

18, 1

 

Относительные показатели вариации

Коэффициент осцилляции – Коэффициент относительного линейного отклонения – Коэффициент вариации– Дисперсия альтернативного признака Альтернативный признак – это такой признак, которым одни члены обладают, а другие – нет.

доля единиц, не обладающих признаком

доля единиц, обладающих признаком

Виды дисперсий и правила их сложения

Межгрупповая дисперсия

Между отдельными видами дисперсий существует взаимосвязь, которую можно записать в виде правила сложения дисперсий: Пример: Распределение сотрудников КБ по производительности труда 1. Расчет общей дисперсии

x
f
xf
x 2
x 2 f

10
50
50
100
500

11
150
165
121
1815

13
50
65
169
845

15
50
75
225
1125

18
70
126
324
2268

20
30
60
400
1200

40
541

7753

2. Расчет дисперсии по первой группе

x
f
xf
x 2
x 2 f

10
50
50
100
500

11
150
165
121
1815

13
50
65
169
845

25
280

3160

3. Расчет дисперсии по второй группе

x
f
xf
x 2
x 2 f

15
50
75
225
1125

18
70
126
324
2268

20
30
60
400
1200

15
261

4593

4. Расчет межгрупповой дисперсии







11, 2
25
-2, 325
5, 405
135, 140

17, 4
15
3, 875
15, 015
225, 234

40


360, 375

5. Расчет средней из индивидуальных дисперсий Эмпирическое корреляционное отношение (ЭКО) На основании правила сложения дисперсий вычисляется эмпирическое корреляционное отношение (ЭКО), которое равно квадратному корню из отношения межгрупповой дисперсии к общей:

Такой порядок вычисления обусловлен разложением общей вариации на вариацию, зависящую от фактора, положенного в основу группировки (в нашем примере – повышение и неповышение квалификации), которая численно равна межгрупповой дисперсии, и общую вариацию.

Межгрупповая дисперсия составляет часть общей дисперсии и складывается под влиянием только одного группировочного фактора. Именно поэтому подкоренное выражение показывает долю вариации за счет группировочного признака.

ЭКО изменяется в переделах от нуля до единицы. Чем ближе его значение к единице, тем большая доля вариации падает на группировочный признак.

Некоторые математические свойства дисперсий

При вычитании из всех значений признака некоторой постоянной величины дисперсия не изменится.
При сокращении всех значений на постоянный множитель дисперсия уменьшится в раз.
Средний квадрат отклонений значений признака от постоянной произвольной величины больше дисперсии признака на квадрат разности между средней арифметической и постоянной величиной.
На основании свойств дисперсии ее можно подсчитать способом отсчета от условного нуля и способом моментов.

 

Интервал









90-100
95
2
190
-30
-3
-6
9
18

100-110
105
6
630
-20
-2
-12
4
24

110-120
115
8
920
-10
-1
-8
1
8

120-130
125
18
2 250
0
0
0
0
0

130-140
135
5
675
10
1
5
1
5

140-150
145
4
580
20
2
8
4
16

150-160
155
3
465
30
3
9
9
27

160-170
165
2
330
40
4
8
16
32

170-180
175
2
350
50
5
10
25
50


50
6 390


14

180

 

Экономические индексы Понятие индексов В статистике под индексом понимается относительная величина (показатель), выражающая изменение сложного экономического явления во времени, в пространстве или по сравнению с планом. В связи с этим различают динамические, территориальные индексы, а также индексы выполнения плана.

Многие общественные явления состоят из непосредственно несопоставимых явлений, поэтому основной вопрос – это вопрос сопоставимости сравниваемых явлений.

К какому бы экономическому явлению ни относились индексы, чтобы рассчитать их, необходимо сравнивать различные уровни, которые относятся либо к различным периодам времени, либо к плановому заданию, либо к различным территориям. В связи с этим различают базисный период (период, к которому относится величина, подвергаемая сравнению) и отчетный период (период, к которому относится сравниваемая величина). При исчислении важно правильно выбрать период, принимаемый за базу сравнения.

Индексы могут относиться либо к отдельным элементам сложного экономического явления, либо ко всему явлению в целом.

Индивидуальные индексы Показатели, характеризующие изменение более или менее однородных объектов, входящих в состав сложного явления, называются индивидуальными индексами – i x.

Индекс получает название по названию индексируемой величины.

В большинстве случаев в числителе стоит текущий уровень, а в знаменателе – базисный уровень. Исключением является индекс покупательной способности рубля.

Индексы измеряются либо в виде процентов (%), либо в виде коэффициентов.

Сводные индексы

Сложные явления, для которых рассчитывается сводный индекс, отличаются той особенностью, что элементы, их составляющие, неоднородны и, как правило, несоизмеримы друг с другом. Поэтому сопоставление простых сумм этих элементов невозможно. Сопоставимость может быть достигнута различными способами:

сложные явления могут быть разбиты на такие простые элементы, которые в известной степени являются однородными;
сравнение по стоимости, без разбиения на отдельные элементы.
Цель теории индексов – изучение способов получения относительных величин, используемых для расчета общего изменения ряда разнородных явлений.

Товар
Базисный
Отчетный

1



2



...



n






Индекс стоимости товарооборота Индекс цены товарооборота Индекс физического объема товарооборота Проблема выбора весов Если индексируемой величиной является качественный признак, то вес принимается на уровне текущего периода.

Если же индексируемой величиной является количественный признак, то вес принимается на уровне базисного периода.

Такой выбор весов позволяет записать следующую связь: Сводные индексы в агрегатной форме позволяют нам измерить не только относительное изменение отдельных элементов изучаемого явления и явления в целом в текущем периоде по сравнению с базисным, но и абсолютное изменение.

Например, если мы вычтем из числителя индекса цены его знаменатель, то мы получим абсолютное изменение стоимости товарооборота в результате изменения цен: То же самое можно сделать для индекса физического объема и для индекса товарооборота.

Средние индексы

Агрегатная форма индекса – одна из важнейших, но не единственная. В практических расчетах очень часто используются средние индексы. Это связано с тем, что, например, в индексе цены пересчет продукции, реализованной в текущем периоде, в базисные цены практически очень сложен. В то время как индивидуальные индексы цены на практике разрабатываются постоянно.

Агрегатный индекс цены тождественен среднему гармоническому индексу цены.

Агрегатный индекс физического объема тождественен среднему арифметическому индексу физического объема.

Проблема связана лишь с прочтением условия задачи.

Цепные и базисные индексы с постоянными и переменными весами Цепные индексы: Сумма произведений индивидуальных цепных индексов дает базисный индекс за соответствующий период.

Базисные индексы:

Увидим, что частное от деления последующего базисного индекса на предыдущий индекс дает нам цепной индекс за соответствующий период.

С постоянными весам

Цепные

Базисные

Преимущество сводных индексов с постоянными весами состоит в том, что их можно сравнивать между собой, а также получать цепные индексы из базисных и наоборот.

Для индексов с переменными весами такое правило не сохраняется.

С постоянными весами рассчитываются индексы физического объема продукции, а с переменными весами – индексы цен, себестоимости, производительности труда.

Индекс дефлятора используется для перевода значений стоимостных показателей за отчетный период в стоимостные измерители базисного периода.

Индекс дефлятора ВВП в 1998 г.

Для построения индекса дефлятора можно использовать индексы с переменными весами.

Индексы постоянного состава, переменного состава и структурных сдвигов В тех случаях, когда мы анализируем изменение во времени сравниваемой продукции, мы можем поставить вопрос о том, как в различных условиях (на различных участках) меняются составляющие индекса (цена, физический объем, структура производства или реализации отдельных видов продукции). В связи с этим строятся индексы постоянного состава, переменного состава, структурных сдвигов.

Индекс постоянного (фиксированного) состава по своей форме тождественен агрегатному индексу.

Объединение
Базисный
Отчетный

p 0
q 0
p 0
q 0

1
15
5000
11
20000

2
18
10000
13
15000

Цена по обоим предприятиям изменилась на 27, 2 %.

Этот индекс не учитывает изменение объема продажи продукции на различных рынках в текущем и базисном периодах.

Индекс переменного состава используется для характеристики изменения средней цены в текущем и базисном периодах.

Цены снизились на 30 %.

Индекс структурных сдвигов

Индексы Пааше, Ласпейреса и " идеальный индекс" Фишера

Сводный индекс цены с базисными весами – это индекс цены Ласпейреса.

Надо отметить, что сводный индекс физического объема с базисными весами также именуется индексом физического объема Ласпейреса.

Сводный индекс физического объема с текущими весами – это индекс цены Пааше.

Аналогично сводный индекс цены с текущими весами также называется индексом цены Пааше.

Компромиссом явился " идеальный индекс" Фишера: Аналогичный индекс можно построить и для индексов физического объема.

Территориальные индексы

В статистике существует необходимость сопоставления уровней экономических явлений в пространстве. Для расчета значений используются территориальные индексы. Для их исчисления соответствующие показатели по всем видам продукции умножаются на количество продукции, произведенной во всей области.

Так как количество продукции каждого вида равно сумме продукции каждого вида в районе А и в районе В, расчет производится по формуле:

для района А по сравнению с районом В:
для района В по сравнению с районом А:
Индексы планового задания и выполнения плана Ряды динамики Задачи статистики в области рядов динамики

определить объем и интенсивность развития явления при помощи измерения уравнения ряда и средних характеристик;
выявить тренд;
определить величину колеблемости уровней ряда вокруг тренда;
выявить и измерить сезонные колебания;
сравнить во времени развитие отдельных экономических показателей;
измерить связь между явлениями и процессами.
Понятие и виды рядов динамики

Ряд динамики – это ряд последовательно расположенных статистических показателей (в хронологическом порядке), изменение которых показывает ход развития изучаемого явления.

Ряд динамики состоит из двух элементов: момента (периода) времени и соответствующего ему статистического показателя, который называется уровнем ряда. Уровень ряда характеризует размер явления по состоянию на указанный в нем момент (период) времени. В связи со сказанным различают моментные и интервальные ряды динамики.

В зависимости от способов выражения уровней различают ряды динамики, заданные: а) рядом абсолютных величин; б) рядом относительных величин; в) рядом средних величин.

Несопоставимость уровней рядов динамики

Уровни рядов динамики должны быть сопоставимы между собой. Для несопоставимых величин нельзя вести расчеты показателей рядов динамики.

Несопоставимость может быть:

по территории,
по кругу охватываемых объектов,
из-за разных единиц измерения,
из-за изменения уровня явления на различные даты,
из-за различного понимания единицы объекта,
по структуре.
Смыкание рядов динамики

В большинстве случаев уровни ряда приводятся к сопоставимому уровню путем пересчета. Например, может использоваться метод смыкания.

Продукция
1991
1992
1993
1994
1995
1996

22-х предприятий
120
125
130
140



27-и предприятий



170
175
192

Выровненный ряд
80, 0
82, 2
86, 7
100, 0
102, 5
112, 9

Суть метода заключается в том, что уровень 1994 г. принимается за 100 %, а затем производим соответствующий пересчет. Получаем ряд относительных величин.

Показатели изменения уровней ряда

Характеристика показателей изменения уровней ряда достигается путем сравнения уровней ряда между собой.

Здесь различаются базисный и текущий периоды и т.п.

Большой проблемой является выбор базы сравнения. Этот выбор должен быть обусловлен теоретически. База сравнения – это наиболее характерный период в развитии изучаемого социально-экономического явления.

1. Абсолютный прирост Характеризует размер увеличения (уменьшения) уровней ряда за отдельный промежуток времени. Абсолютные приросты могут быть цепными или базисными.

Цепной: Базисный: 2. Темп роста Показывает, во сколько раз данный уровень ряда больше или меньше базисного уровня. Представляет собой соотношение двух сравниваемых уровней.

Цепной: Базисный: Темпы роста выражаются либо в виде процентов, либо в виде коэффициентов. Если темп роста больше единицы (100%), то уровень ряда возрастает, если меньше – то убывает.

3. Темп прироста Показывает, на какую долю (процент) уровень данного периода или момента времени больше или меньше базового уровня. Темп прироста может быть измерен и как отношение абсолютного прироста к базовому уровню.

4. Абсолютное значение одного процента прироста Сравнение абсолютного прироста и темпа прироста за одни и те же промежутки времени показывает, что замедление прироста часто не сопровождается уменьшением абсолютных приростов. При замедлении темпов роста абсолютный прирост может увеличиваться, и наоборот.

Средние характеристики ряда динамики

Записанные характеристики ряда динамики относятся к каждому члену динамического ряда. Только базисные характеристики относятся ко всему периоду. Средние же характеристики полностью охватывают изменения за весь период, к которому относится динамический ряд.

1. Средний уровень ряда.

Показывает, какова средняя величина уровня, характерного для всего периода. Имеет смысл рассчитывать, когда величина изменения ряда более или менее стабильна.

Средний уровень ряда исчисляется по средней хронологической. Ее расчет для интервального и моментного ряда имеет свои особенности. Для интервального ряда, уровни которого можно суммировать, можно исчислять по средней арифметической простой.

Для моментного ряда с равноотстоящими уровнями: Для моментного ряда с неравноотстоящими интервалами: Например, даны следующие данные: 01.01.98 – 455 01.07 – 465 01.11 – 495 01.01.99 – 505 01.05 – 465 01.10 – 485 01.12 – 505 2. Средний абсолютный прирост Показывает скорость развития явления в изучаемом динамическом ряду. Он получается из абсолютных приростов как их средняя арифметическая. Может быть получен также как отношение абсолютного прироста за весь период к числу уровней без одного.

3. Средний темп роста Изменение (рост) социально-экономических явлений происходит по правилу сложных процентов. Средняя геометрическая из годовых темпов роста равна: 4. Средний темп прироста Выявление основной тенденции развития динамических рядов Существует два подхода: механическое и аналитическое выравнивание.

Механическое выравнивание:

Выявление основной тенденции может быть осуществлено графически.
Способ укрупнения интервалов.
Метод скользящей средней.
Рассмотрим подробнее последний метод. Итак, смысл аналитического выравнивания методом скользящей средней состоит в том, что он позволяет сглаживать случайные колебания в уровнях развития явления во времени. Поэтому период охватываемой средней постоянно меняется.

Период осреднения как правило выбирается равным временному периоду, в течение которого начинается и заканчивается цикл развития какого-либо явления.

Пример расчета пятилетней скользящей средней:

Год
у
Скользящая средняя

1990
10, 9


91
9, 7


92
13, 1
11, 40

93
11, 1
11, 98

94
12, 2
12, 78

95
13, 8
12, 82

96
13, 7
13, 26

97
13, 3
13, 24

98
12, 8


99
12, 6

У этого метода есть ряд недостатков:

в зависимости от периода осреднения мы теряем 1, 2, 3 и более уровней ряда;
подсчитанные нами показатели не относятся ни к какому конкретному периоду времени.
Из-за этого не представляется возможным осуществлять прогнозирование развития изучаемых явлений.

Скользящая средняя может быть рассчитана и как взвешенная.

Методы аналитического выравнивания Это наиболее эффективные методы выравнивания. Имеют конечный вид функции времени (уравнения времени). Возможно выравнивание по прямой, по гиперболе, по параболе 2-го или 3-го порядка.

Задача состоит в том, чтобы подобрать для конкретного ряда динамики такую логарифмическую кривую, которая бы наиболее точно отображала черты фактической динамики. Решение этой задачи часто связано с методом наименьших квадратов, т.к. наилучшим считается такое приближение выровненных данных к эмпирическим, при которых сумма квадратов их отклонений является минимальной: Техника аналитического выравнивания по прямой имеет наиболее простое выражение.

Система уравнений упрощается, если значение подобрать таким образом, чтобы т.е. перенести начало отсчета в середину рассматриваемого периода.

Годы
Cтудентов
t
t 2
yt
y t

1986
98, 4
-4
16
-393, 6
94, 8

87
97, 9
-3
9
-293, 7
96, 0

88
97, 2
-2
4
-194, 7
97, 2

89
95, 7
-1
1
-95, 7
98, 4

90
95, 0
0
0
0
99, 6

91
99, 2
1
1
99, 2
100, 6

92
102, 4
2
4
204, 8
102, 0

93
104, 0
3
9
312, 0
103, 2

94
106, 2
4
16
424, 8
104, 4


896, 0
0
60
73, 4
896, 4

Прогнозирование и интерполяция Прогнозирование (экстраполяция) – это определение будущих размеров экономического явления.

Интерполяция – это определение недостающих показателей уровней ряда.

Наиболее простым методом прогнозирования является расчет средних характеристик роста (средний абсолютный прирост, средний темп роста и т.д.) и перенесение их на будущие даты. Прогнозирование на основе аналитического выравнивания является наиболее распространенным методом.

Статистическое измерение связи

Задачи статистики в изучении связи. Взаимосвязанные признаки и их классификация.

Задачи статистики состоят в выявлении связи, определении ее направления и ее измерении. Наиболее же общая задача – это прогнозирование и регулирование социально-экономических явлений на основе полученных представлений о связях между явлениями.

Статистика рассматривает экономический закон как существенную и устойчивую связь между определенными явлениями и процессами. Познавая связи, статистика познает законы. А их знание позволяет управлять общественным развитием. Основой изучения связей является качественный анализ.

Различают два вида признаков:

Факторные – те, которые влияют на изменение других процессов.
Результативные – те, которые изменяются под воздействием других признаков.
Виды и формы связей, различаемые в статистике.

В статистике связи классифицируются по степени их тесноты. Исходя из этого различают функциональную (полную) и статистическую (неполную, корреляционную) связь.

Функциональная связь – такая связь, при которой значение результативного признака целиком определяется значением факторного (например, площадь круга). Она полностью сохраняет свою силу и проявляется во всех случаях наблюдения и для всех единиц наблюдения. Каждому значению факторного признака соответствует одно или несколько определенных значений результативного признака.

Для корреляционной связи характерно то, что одному и тому же значению факторного признака может соответствовать сколько угодно различных значений результативного признака. Здесь связь проявляется лишь при достаточно большом количестве наблюдений и лишь в форме средней величины.

По направлению изменений факторного и результативного признака различают связь прямую и обратную.

Прямая связь – такая связь, при которой с изменением значений факторного признака в одну сторону, в ту же сторону меняется и результативный признак.

Обратная связь – такая связь, при которой с увеличением (уменьшением) факторного признака происходит уменьшение (увеличение) результативного признака.

По аналитическому выражению выделяются две основные формы связи:

прямолинейная (выражается уравнением прямой);
криволинейная (описывается уравнениями кривых линий – гипербол, парабол, степенных функций).
Методы изучения связей

Описательные (механические) методы

К ним относятся: (1) метод приведения параллельных рядов,

(2) балансовый метод,

(3) графический метод,

(4) метод аналитической группировки.

Наибольший эффект достигается при комбинировании нескольких методов.

(1) Метод приведения параллельных рядов

Приводится ряд данных по одному признаку и параллельно с ним – по другому признаку, связь с которым предполагается. По вариации признака в первом и втором ряду судят о наличии связи признаков. Такой метод позволяет вывести только направление связи, но не измерить ее.

(2) Балансовый метод

Взаимосвязь может быть также охарактеризована с помощью балансов.

Пример: межрайонная связь.

Р-н приб.

Р-н отпр.
А
Б
В
Г
Итого отправлено

А
20
100
80
60
260

Б
50
30
40
70
190

В
40
60
25
80
205

Г
100
50
90
35
275

Итого прибыло
210
240
235
245
930

(3) Графический метод

Может использоваться как самостоятельно, так и совместно с другими методами.

Если конкретные данные перенести на график, то полученное изображение называется полем корреляции. На оси абсцисс откладывается значение факторного признака, а на оси ординат – результативного. Каждая единица, обладающая определенным значением факторного и результативного признака, обозначается точкой.

Беспорядочное расположение говорит об отсутствии связи. Наоборот, чем сильнее связь, тем теснее точки группируются вокруг определенной линии.

(4) Метод аналитической группировки

Сначала выбираются два признака: факторный и результативный. По факторному признаку производится группировка, а по результативному – подсчет средних или относительных величин.

Путем сопоставления характера изменений значений факторного и результативного признака можно сделать вывод о наличии связи и ее направлении. При помощи метода аналитической группировки можно сделать вывод и о тесноте связи.

Пример: среднегодовая з/п работников-текстильщиков в 1849 г.

Группы предприятий по числу работников
З/п в рублях

более 1000
219

501– 1000
204

101 – 500
198

51 – 100
188

24 – 50
192

менее 20
164

Аналитические методы

Это основные методы изучения связи. Они делятся на непараметрические и параметрические.

Непараметрические

Их еще называют ранговыми методами. Они связаны с расчетами различных коэффициентов. Применяются как отдельно, так и совместно с параметрическими. Особенно эффективны непараметрические методы, когда необходимо измерить связь между качественными признаками. Они проще в вычислении и не требуют никаких предположений о законе распределения исходных статистических данных, т.к. при их расчете оперируют не самими значениями признаков, а их рангами, частотами, знаками и т.д.

Коэффициент Фехнера (коэффициент совпадения знаков)

x
y

x 1

x 2

x 3

.

.

.

x n
y 1

y 2

y 3

.

.

.

y n

х = х i - х
y = y i - y

+

+

+

+


+

+

+

+

Расчет основан на применении первых степеней отклонений значений признака от среднего уровня ряда двух связанных признаков.

i =
кол-во совпадений – кол-во несовпадений

общее количество отклонений

i =
3 – 4
= –
1

7
7

Коэффициент совпадения знаков может принимать значения от –1 до +1. Чем ближе значение коэффициента к |1|, тем связь более тесная. Знак коэффициента говорит о направлении, величина – о силе связи.

Коэффициенты ассоциации и контингенции Используются для измерения связи между двумя качественными признаками, состоящими только из двух групп.


.....
.....
Итого

.....
a
b
a + b

.....
d
c
c + d

Итого
a + c
b + d
a + b+ c+ d

Оценка

Посещение
Неудовлетв.
Положит.
Итого

Посещали
86
14
100

Не посещали
22
28
50

Итого
108
42
150

– коэфф. ассоциации; – коэфф. контингенции.

Коэффициент контингенции всегда меньше коэффициента ассоциации. Связь считается подтвержденной, если или.

Коэффициент Спирмана (ранговый коэффициент) Рассчитывается по следующей формуле:.

№ п/п
Себестоимость единицы прод.
Средняя з/п
Ранги
d i = R z - R f
d i 2

R z
R f

1.
68, 8
168, 5
3
6
-3
9

2.
70, 2
158, 7
5
1
4
16

3.
71, 4
171, 7
7
8
-1
1

4.
78, 5
183, 9
10
10
0
0

5.
66, 9
160, 4
2
2
0
0

6.
69, 7
165, 2
4
5
-1
1

7.
72, 3
175, 0
8
9
-1
1

8.
77, 5
170, 4
9
7
2
4

9.
65, 2
162, 7
1
3
-2
4

10.
70, 7
163, 0
6
4
2
4

Итого





40

Коэффициент Спирмана может принимать значения от –1 до +1, причем чем ближе значение коэффициента к |1|, тем связь более тесная. Знак коэффициента говорит о направлении связи.

Непараметрические Главным параметрическим методом является корреляционный. Он заключается в нахождении уравнения связи, в котором результативный признак зависит только от интересующего нас фактора (или нескольких факторов). Все прочие факторы, также влияющие на результат, принимаются за постоянные средние.

Удобной формой изучения связи является корреляционная таблица. В этой таблице одни признаки располагаются по строкам, а другие – в колонках. Числа, стоящие на пересечении строк и колонок, показывают, сколько раз встречается данное значение факторного признака с данным значением результативного.

Рассмотрим следующую схему:

К-во станков

Час. прод.
3-5
5-7
7-9
9-11
f y

10-15
5



5

15-20
2
4
2

8

20-25

6
1

7

25-30


6

6

30-35


2
2
4

f x
7
10
11
2
30

По такой таблице можно сделать выводы (1) о том, существует ли связь, (2) о ее направлении и (3) о ее интенсивности (при условии существования связи).


В указанных уравнениях величина результативного признака представляет собой функцию только одного фактора х. Все прочие факторы приняты за постоянную и выражены параметром а 0.

Таким образом, при выравнивании фактические значения у заменяются значениями, вычисленными по уравнению. Поскольку все факторы, определяющие у, являются постоянными средними величинами, постольку и выровненные значения (у х) являются средними величинами ().

Параметры а 1 (а в уравнении параболы и а 2) называются коэффициентами регрессии. В корреляционном анализе эти параметры показывают меру, в которой изменяется у при изменении х на одну единицу.

При линейной зависимости коэффициент регрессии а 1 называется также коэффициентом пропорциональности. Он положителен при прямой зависимости, отрицателен – при обратной.

Параметр же а 0 показывает влияние на результативный фактор множества неучтенных факторов.

Уравнение регрессии имеет большую ценность, поскольку позволяют экстраполировать показатели связи за пределы исследованных данных.

Корреляционное отношение для выровненных значений результативного признака рассчитывается так же, как и для значений, полученных на основе группировок.

В этом случае вся вариация результативного признака за счет всех факторов обозначается Вариация результативного признака за счет всех факторов, кроме х, равна Вариация за счет интересующего нас фактора х равна разности Дисперсия, характеризующая величину вариации за счет фактора х, может быть рассчитана непосредственно как Отсюда Данное корреляционное отношение применяется во всех случаях изучения связи для оценки ее тесноты независимо от формы связи (прямолинейной или криволинейной).

Для прямолинейной связи может быть преобразовано в специальный линейный коэффициент корреляции Значение его колеблется от –1 до +1. Знак говорит о направлении, а величина – о тесноте связи.

Выборочный метод Основы выборочного метода Выборочное наблюдение – одно из наиболее современных видов статистического наблюдения. Выборочное наблюдение – это такое наблюдение, при котором обследованию подвергается часть единиц изучаемой совокупности, отобранных на основе научно разработанных принципов, обеспечивающих получение достаточного количества достоверных данных, для того чтобы охарактеризовать всю совокупность в целом.

Средние и относительные показатели, полученные на основе выборочных данных, должны достаточно полно воспроизводить или репрезентатировать соответствующие показатели совокупности в целом.

Логика выборочного наблюдения

определение объекта и целей выборочного наблюдения;
выбор схема отбора единиц для наблюдения;
расчет объема выборки;
проведение случайного отбора установленного числа единиц из генеральной совокупности;
наблюдение отобранных единиц по установленной программе;
расчет выборочных характеристик в соответствии с программой выборочного наблюдения;
определение ошибки, ее размера;
распространение выборочных данных на генеральную совокупность;
анализ полученных данных.
Основные преимущества

Выборочное наблюдение можно осуществить по более широкой программе.
Выборочное наблюдение более дешевое с точки зрения затрат на его проведение.
Выборочное наблюдение можно организовать тогда и в тех случаях, когда отчетностью мы воспользоваться не можем.
Основные недостатки

Полученные данные всегда содержат в себе ошибку, о результатах наблюдения можно судить лишь с определенной степенью достоверности. Но по сравнению с другими видами наблюдения это достоинство выборочного метода.
Для его проведения требуются квалифицированные кадры.
Вся совокупность единиц, из которых производится отбор, называется генеральной. Совокупность единиц отобранных называется выборочной.

Для генеральной совокупности – Для выборочной совокупности – Обычно частота обозначается как, а относительная численность единиц выборочной совокупности, обладающая данным признаком, называется частостью –. Если численность единиц выборочной совокупности обозначить через, то получим: Ошибки выборки Чтобы оценить степень точности выборочного наблюдения, необходимо оценить величину ошибок, которые могут возникнуть в процессе проведения выборочного наблюдения.

 

Основное внимание уделяется случайным ошибкам репрезентативности.

Средняя ошибка выборки Мерой колеблемости возможных значений выборочной средней является средний квадрат отклонений вариантов выборочной средней от генеральной, взвешенной по их вероятностям, т.е. дисперсия выборочной средней.

Отсюда видно, что средняя ошибка выборки прямо пропорциональна среднему квадратическому отклонению и обратно пропорциональна квадратному корню из численности выборки.

Если выборка используется для определения доли признака, то средняя ошибка выборки определяется по следующей формуле: Когда значение и значение неизвестны, то значение принимается равным.

Предельная ошибка выборки Средняя ошибка выборки используется для определения возможных отклонений показателей выборочной совокупности от соответствующих показателей генеральной совокупности.

С определенной вероятностью можно утверждать, что эти отклонения не превысят заданной величины, которая называется предельной ошибкой выборки.

Предельная ошибка связана со следующим равенством: – коэффициент, зависящий от вероятности, с которой можно гарантировать определенные размеры предельной ошибки выборки. Применительно к выборочному методу из теоремы Черышева следует, что с увеличением значений величина вероятности быстро приближается к единице.

t
p

1
0, 683

2
0, 954

3
0, 997

4
0, 999936

:
:

В связи с этим, увеличивая численность выборки, можно отклонение выборочной средней от генеральной довести до сколь угодно малых размеров, причем этот результат можно гарантировать с вероятностью сколь угодно близкой к единице.

Основные виды выборки, способы отбора Какой бы способ отбора мы не применяли, на последнем этапе в любом случае надо обеспечить случайную выборку, для того чтобы уменьшить размер выборки. Вид выборки определятся способом отбора единиц, подвергающихся наблюдению.

Выборочная совокупность может быть образована либо путем последовательного отбора единиц, либо путем последовательного отбора групп.

Если перед отбором совокупность разбивается на отдельные группы, из которых затем производится индивидуальный отбор, то такая выборка называется типической, районированной, стратифицированной. Если отбирают целые серии и в них проводится сплошное наблюдение, то такая выборка называется серийной, или гнездовой.

Выборка в любом из указанных видов может быть осуществлена путем повторного или бесповторного отбора. Повторный – это такой отбор, при котором каждая единица или серия участвует в отборе столько раз, сколько отбирают единиц или серий. При бесповторном отборе отобранная единица больше не участвует в отборе.

Случайность отбора обеспечивается следующими механизмами:

путем жеребьевки;
путем механической выборки (все единицы совокупности располагаются в определенном порядке, а затем в зависимости от численности выборки отбираются определенные единицы);
с помощью таблицы случайных чисел.
В зависимости от процедуры отбора расчет предельной ошибки выборки имеет определенную модификацию.


Предельная ошибка выборки

Для средней
Для доли

Повторный отбор




Бесповторный отбор



Примеры задач

Пример 1. Найти среднюю и с вероятностью 0, 954 – предельную ошибку среднего бала, если дисперсия успеваемости равна 0, 56, а обследованию подвергнуто 100 студентов.

Что произойдет с ошибкой среднего балла, если обследовать 400 студентов? – Ошибка уменьшится в два раза. Это значит, что ошибку 0, 06 можно будет гарантировать с вероятностью 0, 954.

Пример 2.

Какую ошибку доли отобранных деталей можно ожидать с вероятностью 0, 9, если дисперсия равна 0, 09, а обследованию подвергнуто 400 деталей?

Численность выборки

Из формулы предельной ошибки выборки формула для расчета численности выборки: Пример 3. Сколько изделий необходимо отобрать для исчисления процента бракованных с ошибкой не более 2 % при вероятности 0, 954, если вариация изучаемого признака максимальная.

Пример 4.

Какое количество станков надо обследовать, чтобы ошибка среднего срока службы не превышала 1 год с вероятностью 0, 997, если дисперсия срока службы станка равна 25 годам.

Повторный групповой отбор

В зависимости от того, отбираются ли единицы или же группы, различают индивидуальный или групповой отбор. При повторном групповом отборе (повторный индивидуальный мы уже рассмотрели) предельная ошибка выборки равна:

Для средней
Для доли

 




 

 

Пример 5.

По данным выборочного обследования средняя удойность коров на 400 обследованных фермах составила 2200 литров в год. Найти ошибку удойности с вероятностью 0, 954, если коэффициент вариации удойности коров между фермами равен 10 %.

Пример 6.

Сколько учебных групп необходимо обследовать, чтобы ошибка среднего балла успеваемости по интересующей нас дисциплине не превышала 0, 2 с вероятностью 0, 954, если дисперсия оценок между группами равна 0, 1.

Многоступенчатый отбор

Ошибка многоступенчатого отбора в общем виде может быть представлена следующей формулой: Для комбинационного отбора предельная ошибка выборки равна: Пример 7. В результате комбинационной выборки оказалось, что средний процент выполнения норм выработки равен 135 %. Дисперсия признака между предприятиями равна 60, а в среднем для отдельных предприятий – 400. Рассчитать ошибку среднего процента выполнения норм с вероятностью 0, 954, если на первой ступени отобрано 100 предприятий, а на второй – 1000 рабочих данной профессии.

Бесповторный отбор

При бесповторном отборе в формулу вносим коэффициент: Соответствующим образом модифицируем формулу для численности (при бесповторном отборе): Определение границ изменения генеральной средней Пример 8. В результате выборочного наблюдения затраты времени на оформление финансовых документов мы поместили в таблицу.

Затраты времени
20-22
22-24
24-26
26-28
Всего

Число обследований
67
133
127
73
400

Определить границы затрат времени на оформление финансовых документов с вероятностью 0, 997.

Интервал






20-22
21
67
-2
-134
268

22-24
23
133
-1
-133
133

24-26
25
127
0
0
0

26-28
27
73
1
73
73

Сумма

400

-194
474

Таким образом, с вероятностью 0, 997 можно утверждать, что время, затраченное на оформление одного финансового документа, равно

Тема № 1: Ввод в курс


1) Предмет и метод социально- экономической статистики.

Предметом социально- экономической статистики является количественная сторона массовых экономических и социальных явлений, методы измерения и анализа объективно существующих размеров, уровней и закономерностей их измерения. Она измеряет количественную сторону явлений неразрывно с качественной.

Все массовые явления имеют количественную и качественную характеристику. Обе эти характеристики взаимосвязаны.


Процесс воспроизводства общественного продукта изучается экономической статистикой. Процесс воспроизводства населения- демографической статистикой. Процесс воспроизводства материального и культурного благосостояния- социальной статистикой.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.055 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал