Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Екатеринбург
Сибирского государственного университета телекоммуникаций и информатики (УрТИСИ СибГУТИ) Факультет сокращенной подготовки (ФСП) Контрольная работа № 1 по дисциплине «Теория электрических цепей» Вариант № 13 Исполнитель: студент 1-го курса з/о Группы №
Екатеринбург 2004г. Задача №1.
Исходные данные: С=0.2 нФ, R=4кОм, L=6мГн, , . Определить полную мощность, потребляемую цепью: S-?
Решение:
Определим величину индуктивного и емкостного сопротивлений на заданной частоте:
Ветви, содержащие катушку и конденсатор, соединены параллельно и их результирующее сопротивление равно:
Результирующее сопротивление всей цепи равно:
Величина тока данной цепи: Определим полную мощность цепи:
Полная мощность цепи равна: S=0.033мВт
Задача №2. Исходные данные: J=0.1 A, E=125B, Методом наложения определить ток в :
Решение:
1. Отсоединим ветвь с источником тока, тогда схема примет вид:
По второму закону Киргофа для контуров 1- - 2 и 1 - - 2 запишем уравнения: (1)
По первому закону Киргофа для узла 1 запишем уравнение: (2) Поскольку то из второго уравнения (1) тогда имеем
2. Закоротим ветвь с источником ЭДС Е, тогда схема принимает вид:
По первому закону Кирхгофа для узлов 2 и 3 запишем уравнения: По второму закону Кирхгофа для контуров, не содержащих источника тока, запишем уравнение:
Задача №3. Составить уравнения Кирхгофа для мгновенных и комплексных значений электрических величин.
Решение: 1. Уравнения для комплексных значений. Обозначим токи в отдельных ветвях цепи через и зададимся их направлением, а узлы пронумеруем цифрами 1, 2, 3 и 4. По первому закону Кирхгофа запишем уравнения для трех узлов цепи: Узел 1: Узел 2: (1) Узел 3: По второму закону Кирхгофа для двух контуров не содержащих источника тока, запишем уравнения: Контур 1-3-4-1: Контур 1-2-4-1: (2) Уравнения (1) и (2) в совокупности образуют систему пяти линейных алгебраических уравнений относительно пяти неизвестных токов . Решение приведенной системы уравнений позволяет эти токи определить.
2. Уравнения для мгновенных значений. По первому закону Кирхгофа запишем уравнения для трех узлов цепи: Узел 1: Узел 2: (3) Узел 3: По второму закону Кирхгофа для двух контуров, не содержащих источника тока, запишем уравнения: Контур 1-3-4-1: Контур 1-2-4-1: (4) Уравнения (3) и (4) в совокупности образуют систему пяти уравнений, позволяющих определить неизвестные токи Задача №4.
Решение: 1. Метод контурных токов. Рассмотрим три контура и обозначим токи в них через . Очевидно, что , а для двух остальных контуров, не содержащих источника тока, запишем уравнения: Контур 1-2-4-1: Контур 1-3-4-1: (1)
В результате имеем систему двух линейных алгебраических уравнений с двумя неизвестными токами . Решение этой системы уравнений позволяет определить отмеченные токи. Токи в отдельных ветвях определяются из соотношений: (2)
2. Метод узловых напряжений. Заземлим узел 1, тогда потенциал этого узла будет равен нулю Для определения потенциалов узлов 2, 3 и 4 составим систему уравнений: (3)
- величина узлового тока в узле. - электропроводимость отдельного узла. - электропроводимость отдельной ветви между узлами I и j.
Поскольку ветвь 4-1 содержит источник ЭДС и то и система уравнений (3) преобразуется к виду:
(4)
Решение системы (4) позволяет определить потенциалы узлов 2 и 3. Токи в ветвях определяются из соотношений:
Задача №5. Исходные данные: Е=100В,
Методом эквивалентного генератора определить ток в -
Решение:
Отсоединим ветвь с резистором а источник ЭДС перенесем в ветви 1-С- 2 и 1 – J – 2, тогда схема примет вид:
Искомый ток в ветви с резистором определяется из соотношения: где: - напряжение на резисторе, - сопротивление резистора, - сопротивление цепи после отсоединения резистора.
Для вычисления потенциалов узлов 1 и 2 воспользуемся методом узловых напряжений. Заземлим узел 2, тогда а потенциал узла 1 определим из решения уравнения:
сопротивление ветви 1-С-2, электропроводимость узла 1.
Закоротим зажимы источников ЭДС, зажимы источника тока разомкнем и определим эквивалентное сопротивление цепи:
МинистерствоРоссийскойФедерации по связи и информатизации Уральский технический институт связи и информатики (филиал)
|