Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Алюминотермическое восстановление оксидов металлов. Характеристики алюминотермического процесса.






Одним из важнейших технико-экономических показателей промышленных алюминотермических процессов является извлечение восстанавливаемого металла из концентратов. Физико-химические факторы, от которых зависит степень извлечения металлов из оксидов: скорость плавления шихты, температурные условия плавки, полнота протекания диффузионных процессов.

Вероятная полнота протекания процесса и принципиальная возможность его осуществления определяются, в первую очередь, термодинамическими характеристиками взаимодействия оксидов металлов с алюминием [11].

Общий вид уравнения взаимодействия оксидов с алюминием (1):

 

2/m MenOm + 4/3 Al = 2n/m Me + 2/3 Al2O3 (1)

 

Самопроизвольное протекание этой реакции возможно при условии –высокая термодинамическая прочность оксидов алюминия по сравнению с оксидами восстанавливаемых металлов [12]. Прочность оксидов различных металлов можно охарактеризовать величиной изобарного потенциала ∆ G0, имеющего места при взаимодействии этих металлов с кислородом.

При проведении алюминотермического процесса рассчитывают изобарно-изотермический потенциал. Данный расчет сводится к анализу термодинамических равновесий в системе металл - неорганическое вещество. Как известно, любой химический процесс сопровождается изменением энергии системы. Оно равно максимальной работе, которая производится этой системой или совершается над системой в течение процесса [13].

Необходимые расчеты проводят используя стандартные величины по обобщенному уравнению как первого, так и второго закона термодинамики (уравнение Гиббса-Гельмгольца) (2):

 

∆ G = ∆ H - Τ ∆ S, (2)

где ∆ G – энергия Гиббса;

∆ Η – полная энергия системы;

Т∆ S – связанная энергия (при Р = const).

Все подсчеты по таблицам стандартных величин проведены учитывая свойства аддитивности ∆ G, ∆ Н и ∆ S [12].

Также имеются расчетные данные температурной зависимости энергии Гиббса для каждой реакции, в ходе которых образуются различные вещества. К примеру, для некоторых оксидов конденсированной и газовой фаз построены диаграммы ∆ G 0 – Т [14], позволяющие довольно быстро оценить, какой металл способен восстанавливать другой металл из соответствующего оксидного соединения [15, 16, 17].

На рисунке 1 можно наблюдать совместное восстановление многокомпонентных систем. При этом наибольший энергетический вклад в систему вносят триоксид железа (1), триоксид вольфрама (2), триоксид марганца (3). Эти оксиды будут восстанавливаться первыми при рассмотрении температурного интервала. Оксиды MnO и SiO2 восстанавливаются наиболее трудно.

В ходе производства ферросплавов при восстановлении для сдвига равновесия реакций вправо необходимо присутствие трудновосстанавливаемых оксидов растворителя – железа по следующим перечисленным причинам [19]:

- в системе создается более приятные энергетические условия (уменьшается общее значение Δ G0 ), так как оксиды железа восстанавливаются наиболее легче большинства других оксидов;

- железо растворяет восстановленные элементы, при этом понижает их активность, что приводит к смещению равновесия в сторону восстановления в соответствии с констатацией равновесия реакций;

- железо препятствует протеканию вторичных реакций (окислению), а также испарению элементов;

- железо понижает температуру плавления металлической фазы, а также позволяет вести плавку при более низкой температуре.

1 – 2/3 Fe2O3 + 4/3 Al = 4/3 Fe + 2/3 Al2O3;

2 – 2/3 WO3 + 4/3 Al = 2/3 W + 2/3 Al2O3;

3 – 2/3 Mn2O3 + 4/3 Al = 4/3 Mn + 2/3 Al2O3;

4 – 2 FeO + 4/3 Al = 2 Fe + 2/3 Al2O3;

5 – 2 MnO + 4/3 Al = 2 Fe+ 2/3 Al2O3;

6 – SiO2 + 4/3 Al2O3 = Si + 2/3 Al2O3.

 

Рисунок 1 – Температурная зависимость изменения изобарного потенциала реакций, протекающих в ходе алюминотермического восстановления оксидов [18]

 

Проводя термодинамический анализ реакций одновременного алюминотермического восстановления двух или нескольких оксидов необходимо учитывать величину концентраций веществ в металлической фазе. Для того, чтобы оценить влияние концентрации на восстанавливаемость оксида используют реакцию диссоциации оксидов [18]:

 

2/m MenOm= 2 n/m Me + O2, (3)

 

константа равновесия данной реакции равна:

 

. (4)

где Kp - константа равновесия;

- давление кислорода;

Me - металл.

 

Если решить уравнение относительно давления кислорода , то уравнение (4) будет иметь вид:

 

(5)

 

Термодинамически более уместным является восстановление оксидов с максимальным , когда восстанавливают несколько оксидов алюминием.

В соответствии с уравнением (5): по мере протекания восстановительных реакций концентрация МеnOm уменьшается, а концентрация металла растет, что приводит к уменьшению .

Обе реакции восстановления будут иметь равную термодинамическую вероятность в связи с тем, что уменьшение величины , в ходе восстановительных процессов может привести к тому, что прочность оксида, имеющего в чистом виде большее сродство к кислороду.

Из этого следует, что восстанавливаемость оксидов зависит как и от их прочности, определяемой величиной изобарного потенциала по уравнению(2), так и от их концентраций в расплаве. В ходе реакции тепла, выделяемого при алюминотермическом восстановлении триоксида вольфрама, достаточно для протекания до конца [20].

В реакции (1) константа равновесия при 2000 К составляет»2× 104, что соответствует равновесному составу с содержанием 1% волластонита в шлаке и»0, 4% WO. Процесс протекает с высоким извлечением полезного ведущего элемента, так как реакция сопровождается значительным изменением энергии Гиббса [20].

Удельный тепловой эффект Q, характеризующий алюминотермический процесс, можно определить [16], как отношение теплового эффекта реакции Qр к сумме молекулярных масс всех реагирующих веществ ∑ М, кДж/кг:

 

Q = Qp / ∑ М (6)

 

Для определения удельного теплового эффекта, исходя из результатов многочисленных опытов алюминотермического восстановления оксидов, предложена [17] эмпирическая формула (4):

 

ℓ gQ = (∆ Η 0298 К /360) + 2, 33 (7)

 

где Q – тепловой эффект данного алюминотермического процесса, кДж/кг;

∆ Η 298 К – тепловой эффект образования оксида, кДж/г·моль.

Суммарный удельный тепловой эффект при условии, что шихта состоит из двух восстанавливаемых соединений, определяют по уравнению (8):

 

Q = [x (Q1 – Q2)/100] + Q2 (8)

 

где х – составляет содержание первого соединения в шихте, %;

Q1 и Q2 – удельные тепловые эффекты при восстановлении первого и второго оксида соответственно [10].

Температура является вторым важнейшим параметром, характеризующим тепловые условия протекающего алюминотермического процесса. Процесс определения температуры экспериментальным и расчетным путями очень трудоемкий. Трудности возникают из-за отсутствия надежных данных по теплофизическим константам веществ при высоких температурах. При использовании суммарных величин энтальпий продуктов реакции можно рассчитать температуру реакции [21].

По теории Шиндловского А.А. для расчета максимальной температуры металлотермической реакции [22] можно использовать следующее уравнение(9):

 

t = Q – ∑ (Lпл + Lкип) / ∑ Ср, (9)

 

где ∑ Ср – сумма теплоемкостей всех продуктов данной реакции, Дж/моль∙ К;

∑ (Lпл + Lкип) – сумма скрытых теплот плавления и испарения всех продуктов данной реакции, Дж/моль.

Ключников Н.Г. [20] предлагает уравнение (10), в ходе которого можно определить температуру реакционной массы алюминотермического процесса восстановления оксидов:

 

t = , (10)

 

где ∆ Н1 – теплота образования восстановления оксида, Дж/г-экв;

∆ Н2 – теплота образования оксида металла-восстановителя, Дж/г-экв;

Э1 и Э2 – эквивалентные массы восстанавливаемого оксида и металла-восстановителя соответственно;

К – коэффициент, который для алюминотермических реакций принимается равным 3, 15.

Используя тепловой баланс величины плавки, по формуле (11) проводят расчет максимальной температуры алюминотермического процесса восстановления оксидов [20, 21]:

 

Tmax = (Q - Q1 + Cp МеТпл Ме + Ср МеОТпл МеО) / (Ср Ме + Ср МеО) (11)

 

где Q – удельный тепловой эффект данной реакции;

Q1 – соответствует сумме изменений энтальпий продуктов реакции до температуры плавления;

Ме, МеО – продукты реакции;

Тпл – температура плавления;

Ср – теплоемкость продуктов реакции.

Выведена эмпирическая зависимость для определения температуры реакции, используя расчеты по этому уравнению для алюминотермического восстановления ряда оксидов (12):

 

Тmax = 730 +22, 4 δ Η ′, (12)

 

где δ Η ′ - количество тепла данной реакции, кДж/г-атом.

 

Тепла, выделяющегося в ходе протекания основной реакции восстановления оксида, обычно недостаточно для нормального протекания процесса, полного разделения металла и шлака (получение титана, хрома). Поэтому при проведении внепечной выплавки часто используются добавки в шихту оксидов и других многих соединений (термитные добавки), которые при взаимодействии с алюминием дают значительно большую удельную теплоту процесса, чем основной восстанавливаемый оксид [23].

Повышение расхода восстановителя, увеличение количества шлака - все это является существенными недостатками термитных добавок.

По сравнению с применением термитных добавок наиболее эффективным является предварительный нагрев шихтовых материалов.

Температуру процесса необходимо выбрать так, чтобы она обязательно превышала температуру плавления шлака на 300-400 0С. Значение температуры внепечного процесса необходимо принимать максимально возможное, потому что повышение температуры этого процесса может привести к снижению восстанавливаемости оксидов и повышенному испарению элементов во время плавки, а также это повышение связано с дополнительными затратами [10].

На скорость алюминотермического процесса влияют большое количество факторов. Прежде всего, скорость процесса зависит от теплохимических параметров данной реакционной массы, тепловых условий протекания и механизма алюминотермической реакции.

В конденсированных фазах для оценки скорости процессов используют ниже перечисленные выражения [24]:

а) линейная скорость горения определяется по высоте столба прореагировавшего расплава h:

 

vh = (см/сек); (13)

 

б) объемная скорость горения определяется:

 

vs = Vn S = (см3/сек), (14)

 

где S – поверхность протекания реакции;

в) массу прореагировавших веществ можно определить из соотношения:

 

vm = vs d = = (г/сек), (15)

 

где d – плотность всех шихтовых материалов.

В зависимости от физико-химических свойств шихтовых материалов и продуктов плавки скорость проплавления шихты должна находиться в пределах от 100 до 400 кг/м2∙ мин. Это условие необходимо для нормального протекания промышленной внепечной плавки алюминотермических ферросплавов и лигатур.

Возникновение металлической фазы в виде дисперсных капель - специфическая особенность алюминотермического процесса. Благодаря этому свойству слиток алюминотермического сплава формируется в результате осаждения частиц восстанавливаемого металла через толщину расплава. От размера, плотности и вязкости металлической фазы жидкой металлической капли зависит скорость ее движения через расплавленный шлак. Поверхностные свойства металла определяют продолжительность разделения продуктов реакции.

Жидкая металлическая капля опускается под действием силы тяжести в расплавленном шлаке. Эта капля движется в начале пути ускорено до тех пор пока в связи с увеличением сопротивления вязкой среды, пропорциональной скорости падения, рост скорости капли не прекратится, дальнейшее ее движение становится равномерным с постоянной скоростью vр [15]. Радиус образовавшейся капли влияет на движение жидкой капли в расплаве.

Так как шихта состоит из порошкообразных компонентов, то в результате протекания алюминотермической реакции будут образованы мелкие капли металла. Эти капли, опускаясь через расплавленный шлак, застывают на подине горна в виде металлического слитка.

По реакциям (16) и (17) может быть получен ферровольфрам алюминотермическим способом:

 

3WO3 + 4Al = 3W + 2Al2O3 (16)

 

Fe2O3 + 2Al = 2Fe + Al2O3, (17)

 

выявлено [15]: из каждой единицы объема алюминия, израсходованного на восстановление железа, может быть образовано 0, 76 единиц объема железа. Объем получаемого металла и объем израсходованного алюминия близки между собой, что характерно, в основном, для всех алюминотермических реакций.

Авторы [28] предлагают формулу (18) для расчета скорости осаждения металла, которая применяется для большинства алюминотермических процессов, при исследовании падения капель феррохрома в шлаке [25-27]:

 

r max = . (18)

 

Необходимое условие применимости данного уравнения – ламинарность движения капли, т.к. уравнение Стокса (19):

 

r2 ∙ g (γ 2 – γ 1)

v0 = 2/9 ——————, (19)

η

оно справедливо только в том случае, когда сопротивление среды движению шарика пропорционально скорости падения капли. Критическая скорость - это скорость, выше которой сопротивление среды перестает быть пропорциональным скорости падения шарика и, следовательно, ламинарное движение сменяется турбулентным. И эта скорость выражается следующим уравнением:

rmax = . (20)

 

Из расчетов по этой формуле получены значение rmax = 1, 97 см, которое применимо для выплавки ферровольфрама.

Уравнение (20) можно использовать для расчета скорости осаждения металла через расплавленный шлак в алюминотермических реакций, т.к. значение rmax = 1, 97 намного превышает размер образующихся во время реакции восстановления капель.

Анализируя уравнение (20) можно сделать следующие выводы о том, что скорость движения жидкой металлической капли через расплавленный шлак зависит от ее плотности, размера, вязкости металлической и шлаковой фаз. Как известно, важное значение в формировании металлического слитка имеет плотность алюминотермических расплавов.

Технико-экономические показатели производства алюминотермических расплавов определяются формированием слитка в ходе алюминотермического процесса и вязкостью расплава [26].

Вязкость и плотность металла определяют скорость опускания металлической капли. Для того, чтобы снизить вязкость при проведении алюминотермических процессов в шихту вводят различные флюсующие добавки. Наиболее распространенными из них являются известь и плавиковый шпат. Характерной особенностью оксида кальция является то, что он может образовывать со многими оксидами металлов химические соединения с пониженной температурой плавления. Добавка извести обычно приводит к снижению вязкости [27].

Избыток СаО в шихте ведет к понижению активности триоксида вольфрама согласно реакциям (оптимальное количество извести равно 15 % от массы алюминия):

 

CaO + WO3= CaOWO3 (21)

 

2CaO + WO3 = 2CaOWO3 . (22)

 

В зависимости от количества выделяющегося тепла Qэкз алюминотермические процессы можно разделить на три группы:

1) самопроизвольно протекающие (Qэкз ≥ Qр + Qп);

2) с компенсацией тепловых потерь Qп (Qэкз - Qр < Qп);

3) с введением значительных количеств тепла из вне Qp (Qэкз < Qp).

Одним из важнейших факторов, определяющих показатели внепечной плавки, является степень измельчения шихтовых материалов. Поэтому в зависимости от крупности оксидов, условий проведения процесса должен выбираться размер алюминиевого порошка [8].

Для достижения максимального развития восстановительных реакций размер восстановителя должен выбираться так, чтобы при смешивания всех шихтовых материалов в каждой из элементарной части шихты, компоненты обязательно находились в стехиометрическом соотношении (с учетом коэффициентов).

Следовательно, необходимо соответствие отношения объемов зерен оксида и восстановителя и отношения их грамм-эквивалентных объемов (таблица 1) для того, чтобы достигнуть стехиометрического соотношения реагентов в каждый момент проплавления шихты [9].

Таблица 1 – Соотношение грамм-эквивалентных объемов восстанавливаемых оксидов алюминия [18]

Восстанав-ливаемый оксид Объем грамм-эквивалента оксида (Vок ) Vок/VАl DАl/dок Восста-навли-ваемый оксид Объем грамм-эквивалента оксида (Vок) Vок/ VАl DАl/dок
Ba2 O3 Ga2 O3 Fe2 O3 Mn2 O3 Cr2 O3 Ge2 O3 Si2 O3 Zr2 O3 6, 3 5, 3 5, 1 5, 9 4, 8 5, 6 6, 5 5, 6 1, 91 1, 47 1, 55 1, 78 1, 47 1, 70 1, 97 1, 70 0, 81 0, 88 0, 86 0, 83 0, 88 0, 83 0, 80 0, 83 Ti O2 V2 O5 Nb2 O5 Ta2 O5 WO3 Mo O3 NiO CuO 5, 2 5, 4 5, 7 5, 1 5, 4 5, 4 5, 0 6, 2 1, 57 1, 63 1, 73 1, 53 1, 63 1, 63 1, 68 0, 86 0, 85 0, 83 0, 86 0, 85 0, 85 0, 87 0, 84

 

По представленным в таблице 1 данным можно сделать вывод: для большинства оксидов грамм-эквивалентный объем превышает объем грамм-эквивалента алюминия в 1, 5 = 1, 9 раза. Приняв форму зерен компонентов за сферическую, диаметр частиц алюминия должен находиться в пределах (0, 8-0, 9) dок (диаметр зерна восстанавливаемого оксида). Учитывая, что степень восстановления оксидов в промышленных внепечных алюминотермических процессах составляет около 70 - 90%, то приведенное отношение становится более близким к единице. В итоге, принимая величину частиц алюминиевого порошка близкой к размеру частиц оксида, при заданном размере частиц оксида соотношение шихтовых материалов будет близко к стехиометрическому.

Повышение показателей процесса и главным образом выхода металла, применяя шихтовые материалы одинаковой крупности, было установлено рядом исследований [2, 10].

Изучая влияние измельчения алюминия на скорость плавления шихты его крупность была измерена величиной поверхности 1 г порошка, рассчитанной по условному диаметру зерна металла [29].

Для того, чтобы получить максимальный выход металла крупность восстановителя должна быть близкой к крупности восстанавливаемого оксида, причем выход металла тем больше, чем выше измельчение компонентов шихты. При этом нужно учитывать, что переизмельчение шихты алюминотермической плавки приведет к высокому выносу шихтовых материалов и выбросам расплава во время проведения плавки. При тонком измельчении оксидов и получении мелких фракций порошка алюминия приводит к дополнительным потерям материалов. Вследствие этого, восстанавливаемые оксиды не должны быть измельчены менее чем до 0, 1 - 0, 3 мм [29].

Обеспечение необходимых условий для нормальной скорости проплавления шихты возможно в том случае, когда будут подобраны равные размеры восстановителя и оксидов. Если скорость процесса медленная, то размер частиц восстановителя следует уменьшить по сравнению с крупностью оксида.

Когда ведется подбор степени измельчения шихтовых материалов необходимо учитывать, что скорость осаждения восстановленного металла определяется величиной зерна восстановителя, и причиной больших потерь в виде корольков, остающихся в шлаке, будет являться применение мелких фракций алюминиевого порошка [29].

1.4 Некоторые аспекты проведения металлотермии

Многочисленные вещества металлургии, химической технологии, плазмохимических процессов восстановления и синтеза, космической технологии по сварке и плавке металлов, разработки новых высокотемпературных материалов и физико-химических методов исследования материалов находятся в экстремальных условиях как по температуре, так и по давлению окружающей их газовой среды, что ведет к их развитию в современном мире. Это объясняет особенности механизма и кинетики химического взаимодействия между металлами и высокотемпературными материалами (огнеупоры, жаростойкие материалы и др.) [29].

Описывая высокотемпературные процессы важными являются данные по взаимодействию металлов с огнеупорными материалами, например с оксидами.

В окислительно-восстановительных процессах технологического горения шихтовых материалов необходимы данные описывающие взаимодействие порошковых веществ.

В работе [30], описывающей масс-спектрометрические исследования испарения тугоплавких веществ, говорится, что в вакууме при температуре 1873К протекает реакция между танталом и оксидом алюминия, в результате которой образуется шар алюминия даже в том случае, когда взаимодействующие вещества не находятся в непосредственном контакте. Из этого следует, что скорость уменьшения массы в опытах не может служить мерой давления пара вещества при его определении. Чтобы избежать ошибки, которая может возникнуть при взаимодействии образца и материала диффузионной камеры, необходимо такие эксперименты дополнять анализом состава паровой фазы [31].

По степени диссоциации оксидов существует две большие группы металлотермических оксидных систем. Первая группа: системы, которые содержат оксиды нелетучих металлов. Вторая группа: системы с оксидами летучих металлов (оксиды бария, марганца, молибдена и др.) [31].

Одну из главнейших ролей в получении различных металлов, их сплавов играет давление внешней среды. Авторы многих исследований выделяют достоинство вакуумных металлотермических процессов восстановления с образованием субоксидов [32-33], а влияние давления на скорость горения оксидов отмечалось авторами [22, 34-36]. Металлотермические системы могут быть использованы для создания композиционных материалов на основе тугоплавких металлов и оксидов в том случае, если учитывать факторы, которые влияют на процесс протекания восстановления оксидов металлами [37]. Например, система Мо(W, Ta) – Cr2O3(ZrO2), в которой при кристаллизации расплава тугоплавкие материалы образуют нитевидные кристаллы (волокна), равномерно распределяемые в оксидной пленке.

Научно-технический прогресс обуславливает разработка новых и перспективных технологических процессов на основе металлотермических процессов.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.024 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал