Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Синтез решетчатого фильтра
Несмотря на близость РФ и АР фильтров, использование РФ требует введения новых понятий и соотношений, на основе которых выводится структура РФ. Прежде всего, необходимо остановиться на выводе рекуррентных соотношений, которые носят название алгоритма Левинсона-Дарбина. Алгоритм позволяет вычислять для р-го порядка коэффициенты АР и отражения РФ по найденным коэффициентам АР модели сигнала 1…р порядков. По аналогии с фильтром прямого предсказания для сигнала, описываемого моделью АР р-го порядка, можно ввести фильтр обратного предсказания, описываемый выражением
где
где
Чтобы не выходить за рамки общепринятых в теории решетчатых фильтров обозначений (например [4]), в дальнейшем изложении будет использоваться замена Умножив левую и правую части уравнения на
где
Очевидно, что для (р+1)-звенного фильтра должно так же выполняться соотношение типа
Но, как показано в [4], от матричного уравнения (30) можно перейти к матричному уравнению (31) лишь в том случае, если коэффициенты фильтров прямого и обратного предсказания p-го порядка связаны с коэффициентами фильтра (p+1)-го порядка следующим образом
где
Величины, входящие в соотношения (33а) и (33б), описываемые выражениями
как будет показано ниже, интерпретируются как взаимная корреляция ошибок прямого и обратного предсказания при единичной задержке. Для скалярного случая справедливы равенства
Используя соотношения (23а), (23б) и учитывая (23), алгоритм Левинсона-Дарбина, позволяющий вычислять коэффициенты АР по коэффициентам отражения, можно представить в виде
с инициацией
Найденный алгоритм Левинсона-Дарбина позволяет получить структуру РФ. Формулы (1) и (37) дают выражение
которое с помощью (26) и учетом (35) для р -го звена приводится к виду
Аналогично можно найти выражение для ошибки обратного предсказания в р звене
Полученные выражения (41) и (42) дают возможность представить структуру РФ в виде, изображенном на рисунке 3.
Рисунок 3. Обеляющий РФ.
При поступлении сигнала на вход фильтра на выходе каждого звена фильтра появятся ошибки предсказания вперед и назад. Как видно из рисунка 3 ошибки предсказания вперед и назад связаны друг с другом соотношениями (41) и (42). Можно показать, используя соотношение (42), что решение задачи минимизации дисперсии ошибки предсказания
К этому же соотношению можно придти путем несложных преобразований выражений (41) и (42). Таким образом, РФ, коэффициенты отражения которого определяются алгоритмом Левинсона-Дарбина, минимизирует дисперсию ошибки предсказания. Выражение (43) дает удобную оценку коэффициентов отражения РФ, позволяющее обновлять их при адаптации фильтра. Из рисунка 3 видно, что текущий отсчет случайного процесса можно представить в виде
т.е. взвешенным суммированием ошибок обратного предсказания в предшествующий момент времени с коэффициентами веса, равными коэффициентам отражения. Случайная величина хt, представленная в виде (44), полностью определяется коэффициентами веса, роль которых играют коэффициенты отражения. Таким образом, коэффициенты отражения полностью характеризуют случайный процесс в рамках модели АР. Это свойство коэффициентов отражения РФ позволяет использовать их в качестве информативного признака при распознавании и спектральном оценивании.
|