Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Упражнение 5. Решение системы линейных уравнений Методом Крамера






Дана линейная система , где – матрица коэффициентов, – столбец (вектор) свободных членов, – столбец (вектор) неизвестных.

По методу Крамера вычисляется по формуле , где - определители матрицы , - определитель исходной матрицы т.е матрицы А. получается из матрицы A заменой i-того столбца столбцом " b" -свободных членов. Это определяет метод реализации алгоритма в Excel.

Например, нужно решить систему линейных уравнений с 3 неизвестными, с коэффициентами и с правой частью .

  1. Вводим матрицы A, b, затем копируем матрицу A три раза (начальная заготовка для матрицы ) рис.1.
  B C D E F G H I J
                  510 000
  A         Det(A)=   В 180 000
                  480 000
                   
                   
  A1         Det(A1)=   X1=  
                   
                   
                   
  A2         Det(A2)=   X2=  
                   
                   
                   
  A3         Det(A3)=   X3=  
                   
                   

Рис. 1

2. Затем копируем столбец b и вставляем его в А1 в 1 столбец, в А2 во 2 столбец, в А3 - в 3 столбец

3. Вычислите определители полученных матриц в ячейки Н7, Н11, Н15.

4. После определения определителей матриц А1, А2, А3 легко можно получить Х1 по формуле , и так для Х2, Х3

Задания для самостоятельной работы:

1. Решить системы линейных уравнений а) Методом Крамера

2. Вычислите б) квадратичную форму .

 

Таблица 1.

Задание № 1 Матрица   Задание №1 Матрица
  а) б)     а) б)
  а) б)     а) б)
  а) бв)            

 

3. Найдите значение сложных выражений , где а, x, y – вектор из n компонентов, и – матрица размерности .

Таблица 2.

Выражения Вектор а, x, y Матрица ,
 
 
 
 
 

Контрольные вопросы:

  1. Что значит транспонировать матрицу?
  2. С помощью каких функций сумм вычисляются сложные выражения?
  3. В чем заключается метод Крамера?
  4. При каком условии система линейных уравнений имеет решение?
  5. Что выполняет функция СУММКВ?

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.008 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал