Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Средняя величина – это обобщающая количественная характеристика совокупности однотипных явлений по одному варьирующему признаку.






Она отражает объективный уровень, достигнутый в процессе развития явления к определенному моменту или периоду.

Средняя представляет значение определенного признака в совокупности одним числом и элиминирует индивидуальные различия значений отдельных величин совокупности.

Необходимость сочетается со случайностью, поэтому средние величины связаны с Законом больших чисел. Суть этой связи в том, что при осреднении случайные отклонения индивидуальных величин от средней погашаются, а в средней отчетливо выявляется основная тенденция развития.

Важнейшая особенность средней величины – в том, что она относится к единице изучаемой совокупности и через характеристику единицы характеризует всю совокупность в целом.

 

Основные свойства средней величины:

(1) Она обладает устойчивостью, что позволяет выявлять закономерности развития явлений. Средняя облегчает сравнение двух совокупностей, обладающих различной численностью.

(2) Она помогает характеризовать развитие уровня явления во времени.

(3) Она помогает выявить и охарактеризовать связь между явлениями.

Средние позволяют исключить влияние индивидуальных значений признака, т.е. они являются абстрактными величинами. Поэтому средние должны употребляться на основе сгруппированных данных.

 

Расчет средней

К расчету средней предъявляются два основных требования:

(1) Среднюю нужно рассчитывать так, чтобы она погашала то, что мешает выявлению характерных черт и закономерностей в развитии явления, а не затушевывала развитие.

(2) Средняя может быть вычислена только для однородной совокупности. Средняя, вычисленная для неоднородной совокупности, называется огульной.

Одинаковые по форме и технике вычисления средние в одних случаях могут быть огульными, а в других – общими в зависимости от того, с какой целью они интерпретируются.

Говоря о методологии исчисления средних, не надо забывать, что средняя всегда дает обобщенную характеристику лишь по одному признаку. Каждая же единица совокупности имеет много признаков. Поэтому необходимо рассчитывать систему средних, чтобы охарактеризовать явление со всех сторон.

Расчет средних величин производится по правилам, которые разрабатываются математической статистикой. Задача ОТС – дать смысловую, преимущественно экономическую интерпретацию результатам расчетов, произведенных по формулам.

Признак, по которому производится осреднение, называется осредняемым признаком –. Величина осредняемого признака у каждой единицы совокупности называется ее индивидуальным значением.

Значение признака, которое встречается у групп единиц или у отдельных единиц и не повторяется, называется вариантом признака –

Средняя величина этих вариантов, или просто средняя, обозначается.

 

Средняя арифметическая

Простая средняя арифметическая для ряда данных рассчитывается по формуле:

 

Но можно также рассчитать среднюю арифметическую взвешенную как:

 

Свойства средней арифметической:

(1) Сумма отклонений различных значений признака от среднеарифметической равна нулю:

 

(2) Если от каждого варианта вычесть или к каждому варианту прибавить какое-либо произвольное постоянное число, то средняя увеличится или уменьшится на то же самое число.

(3) Если каждый вариант умножить (разделить) на какое-либо произвольное постоянное число, то средняя увеличится (уменьшится) во столько же раз.

(4) Если веса, или частоты, разделить или умножить на какое-либо произвольное постоянное число, то величина средней не изменится. Это свойство дает возможность заменять веса их удельными весами:

 

 

Способ моментов

Часто мы сталкиваемся с расчетом средней арифметической упрощенным способом. В этом случае используются свойства средней величины. Метод упрощенного расчета называется способом моментов, либо способом отсчета от условного нуля.

Способ моментов предполагает следующие действия:

1) Если возможно, то уменьшаются веса.

2) Выбирается начало отсчета – условный нуль. Обычно выбирается с таким расчетом, чтобы выбранное значение признака было как можно ближе к середине распределения. Если распределение по своей форме близко к нормальному, но за начало отсчета выбирают признак, обладающий наибольшим весом.

3) Находятся отклонения вариантов от условного нуля.

4) Если эти отклонения содержат общий множитель, то рассчитанные отклонения делятся на этот множитель.

 

5) Находится среднее значение признака по следующей формуле

   
 
Пример:

 

 

           
до 70     -30 -3 -45
70-80     -20 -2 -34
80-90     -10 -1 -13
90-100          
100-110          
110-120          
120-130          
130-140          
140 и более          
Сумма         -12

 

Средняя гармоническая

Расчет средней гармонической связан с двумя причинами:

1) Не всегда возможно рассчитать среднюю арифметическую на основе имеющихся данных.

2) Расчет средней гармонической проводить более удобно.

 

Расчет простой средней гармонической:

 

Расчет средней гармонической взвешенной:

 

Пример:

 

Такой расчет имеет определенные трудности, которые заключаются в том, что не всегда ясно можно трактовать условие поставленной задачи. Поэтому перед тем, как приступать к расчету средней, необходимо разобраться в экономическом смысле данных, которыми вы располагаете.

Базисный Отчетный
Фонд з/п Среднеспис. з/п Среднеспис. з/п Среднеспис. численность
xf х x f
Средняя гармоническая Средняя арифметическая

 

Общая из индивидуальных средних

Рассчитывается по следующей формуле:

Степенные средние

Те средние величины, которые мы записали, относятся к степенным средним. В наиболее общем виде степенная средняя записывается следующим образом:

 

В зависимости от k и образуются разные виды средних.

Степень k Вид средней Формула расчета
k = 1 Арифметическая    
k = 2 Квадратическая    
k = 0 Геометрическая    
k = -1 Гармоническая    

 

Правило мажорантности:

 

 

Структурные средние

Величина средней определяется всеми значениями признака, встречающимися в данном ряду распределения. Различают такие структурные средние, как:

(1) мода

(2) медиана

(3) квартиль

(4) дециль

(5) перцентиль

Мода

Это значение признака, которое встречается в ряду распределения чаще, чем другие его значения.

В дискретном ряду распределения значения моды определяются визуально. Если же ряд распределения задан как интервальный, то значение моды рассчитывается по следующей формуле:

 

 

– нижняя граница модального интервала,

– величина модального интервала,

– частота (вес) интервала, предшествующего модальному,

– частота модального интервала,

– частота интервала, следующего за модальным.

 

Медиана

Это центральное значение признака, им обладает центральный член ранжированного ряда.

Прежде всего определяется порядковый номер медианы по формуле
и строят ряд накопленных частот. Накопленной частоте, которая равна порядковому номеру медианы или первая его превышает, в дискретном вариационном ряду соответствует значение медианы, а в интервальном – медианный интервал.

Для интервального ряда медиана рассчитывается по следующей формуле:

 

 

– нижняя граница медианного интервала,

– величина медианного интервала,

– сумма частот (весов) ряда,

– сумма накопленных частот (весов) в интервале, предшествующем медианному,

– частота медианного интервала.

 

 

Средняя должна исчисляться не просто тогда, когда есть вариация признака, а тогда, когда мы располагаем качественно однородным вариационным рядом. Среднюю как обобщающую характеристику нельзя применять к таким совокупностям, отдельные части которых подчиняются различным законам распределения (или) развития в отношении величины распределяемого признака.


Показатели вариации

 

 

Необходимость расчета показателей вариации

Средняя представляет собой обобщающую статистическую характеристику, в которой получает количественное выражение типичный уровень признака, которым обладают члены изучаемой совокупности. Но одной средней нельзя отобразить все характерные черты статистического распределения. Возможны случаи совпадения средних арифметических при разном характере распределения.

Показатели вариации используются для характеристики и упорядочения статистических совокупностей.

 

Абсолютные показатели вариации

Для измерения размера вариации используются следующие абсолютные показатели: размах, среднее линейное отклонение, дисперсия, среднее квадратическое отклонение.

Размах

 

Величина его целиком зависит от случайности распределения крайних членов ряда, и значение подавляющего большинства членов ряда не учитывается, в то время как вариация связана с каждым значением члена ряда.

Такие показатели, которые представляют собой средние, полученные из отклонений индивидуальных значений признака от их средней величины, лишены этого недостатка.

Между индивидуальными отклонениями от средней и колеблемостью конкретного признака существует прямая зависимость. Чем сильнее колеблемость, тем больше абсолютные размеры отклонений от средней.

 

 

Дисперсия

Среднее линейное отклонение

 

Среднее квадратическое отклонение

Дисперсию можно подсчитать и по следующей формуле:

По этой формуле ленче считать дисперсию, когда имеешь дело с дискретным рядом распределения.

 

Годовой удой от одной коровы Середина интервала Число коров          
до 2-х 1, 5     -1, 3 5, 2 1, 69 6, 76
2-3 2, 5     -0, 3 0, 6 0, 09 0, 18
3-4 3, 5     +0, 7 1, 4 0, 49 , 98
4-5 4, 5   4, 5 +1, 7 1, 7 2, 89 2, 89
5 и более 5, 5   5, 5 +2, 7 2, 7 7, 29 7, 29
Сумма         11, 6   18, 1

Относительные показатели вариации

 

Коэффициент осцилляции –

 

Коэффициент относительного линейного отклонения –

 

Коэффициент вариации–

 

Дисперсия альтернативного признака

Альтернативный признак – это такой признак, которым одни члены обладают, а другие – нет.

доля единиц, не обладающих признаком

доля единиц, обладающих признаком

Виды дисперсий и правила их сложения

 

 

Межгрупповая дисперсия

Между отдельными видами дисперсий существует взаимосвязь, которую можно записать в виде правила сложения дисперсий:

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.015 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал