![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Противоположное событие. ⇐ ПредыдущаяСтр 3 из 3
Событие Несовместные события — события, которые не наступают в одном опыте. Например, противоположные события несовместны. Вероятности противоположных событий:
Формула умножения вероятностей для независимых событий: Вероятность совместного наступления двух независимых событий А и В равна произведению вероятностей событий А и В. Формула умножения вероятностей для зависимых событий: Вероятность совместного наступления двух зависимых событий А и В равна произведению вероятности одного из них на условную вероятность другого. Приведём схему, облегчающую применение формул при решении задач: Вероятность того, что новая шариковая ручка пишет плохо (или не пишет), равна 0, 1. Покупатель в магазине выбирает одну такую ручку. Найдите вероятность того, что эта ручка пишет хорошо. Решение. 10. На экзамене по геометрии школьнику достается один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Вписанная окружность», равна 0, 2. Вероятность того, что это вопрос на тему «Параллелограмм», равна 0, 15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем. Решение. Из районного центра в деревню ежедневно ходит автобус. Вероятность того, что в понедельник в автобусе окажется меньше 20 пассажиров, равна 0, 94. Вероятность того, что окажется меньше 15 пассажиров, равна 0, 56. Найдите вероятность того, что число пассажиров будет от 15 до 19. Решение. Тогда, используя данные задачи, получаем: 0, 94 = 0, 56 + P(В), откуда P(В) = 0, 94 − 0, 56 = 0, 38. Ответ: 0, 38. В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0, 3. Вероятность того, что кофе закончится в обоих автоматах, равна 0, 12. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах. Решение. Биатлонист пять раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0, 8. Найдите вероятность того, что биатлонист первые три раза попал в мишени, а последние два раза промахнулся. Результат округлите до сотых. Решение. В магазине стоят два платежных автомата. Каждый из них может быть неисправен с вероятностью 0, 05 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен. Решение. 15. При артиллерийской стрельбе автоматическая система делает выстрел по цели. Если цель не уничтожена, то система делает повторный выстрел. Выстрелы повторяются до тех пор, пока цель не будет уничтожена. Вероятность уничтожения некоторой цели при первом выстреле равна 0, 4, а при каждом последующем — 0, 6. Сколько выстрелов потребуется для того, чтобы вероятность уничтожения цели была не менее 0, 98?
Решение. Можно решать задачу «по действиям», вычисляя вероятность уцелеть после ряда последовательных промахов: Р(1) = 0, 6. Ответ: 5.
16. Перед началом волейбольного матча капитаны команд тянут честный жребий, чтобы определить, какая из команд начнёт игру с мячом. Команда «Статор» по очереди играет с командами «Ротор», «Мотор» и «Стартер». Найдите вероятность того, что «Статор» будет начинать только первую и последнюю игры.
Решение.
Другой способ решения: Т.к. жеребьёвку можно рассматривать как подбрасывание монеты, то задачу можно решить по технологии решения задач с монетами. Жеребьёвка проводилась три раза, поэтому N=23=8. Присвоим элементарному событию ««Статор» начинает игру» значение «Орел». Тогда благоприятный исход соответствует только комбинации «ОРО», т.е. N(A)=1. Поэтому Ответ: 0, 125. 17. В классе учится 21 человек. Среди них две подруги: Аня и Нина. Класс случайным образом делят на 3 группы, по 7 человек в каждой. Найти вероятность того, что Аня и Нина окажутся в одной группе. Решение. Ответ: 0, 3. В следующих задачах для решения удобно использовать дерево вероятностей. В части задач дерево построено прямо в условии. В других задачах это дерево следует построить. 18. Павел Иванович совершает прогулку из точки A по дорожкам парка. На каждой развилке он наудачу выбирает следующую дорожку, не возвращаясь обратно. Решение. Каждый маршрут из начальной точки A в любую из конечных точек является элементарным событием в этом эксперименте. События здесь не равновозможные. Вероятность каждого элементарного события можно найти по правилу умножения. Это событие состоит в том, что Павел Иванович прошел маршрутом ABG. Вероятность находится умножением вероятностей вдоль ребер AB и BG:
19. На рисунке изображён лабиринт. Паук заползает в лабиринт в точке «Вход». Развернуться и ползти назад паук не может, поэтому на каждом разветвлении паук выбирает один из путей, по которому ещё не полз. Считая, что выбор дальнейшего пути чисто случайный, определите, с какой вероятностью паук придёт к выходу Решение. Ответ: 0, 0625. Рассмотрим задачу, обобщающую условия целого ряда вероятностных задач, решаемых с помощью дерева вероятностей.
В некотором эксперименте вероятность события A равна 0, 3. Если событие A наступает, то вероятность события C равна 0, 2, а в противоположном случае вероятность события C равна 0, 4. Найдите вероятность события C.
Весь эксперимент обозначим буквой Если осуществилось событие A, то событие C по условию имеет вероятность 0, 2. Поэтому из точки A проведем ребро вниз-влево в точку C и подпишем вероятность. Действуя так же и дальше, достроим все дерево (см. рис.). Чтобы найти вероятность события C, нужно выделить только те пути, которые ведут из корневой точки Теперь нужно вычислить вероятности выделенных путей и сложить их. Пользуясь правилами умножения и сложения вероятностей, получаем:
20. Две фабрики одной фирмы выпускают одинаковые мобильные телефоны. Первая фабрика выпускает 30% всех телефонов этой марки, а вторая — остальные телефоны. Известно, что из всех телефонов, выпускаемых первой фабрикой, 1% имеют скрытые дефекты, а у выпускаемых второй фабрикой —1, 5%. Найдите вероятность того, что купленный в магазине телефон этой марки имеет скрытый дефект.
21. Агрофирма закупает куриные яйца в двух домашних хозяйствах. 40% яиц из первого хозяйства — яйца высшей категории, а из второго хозяйства —20% яиц высшей категории. Всего высшую категорию получает 35% яиц из этих двух хозяйств. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства. Решение.
22. Ковбой Джон попадает в муху на стене с вероятностью 0, 9, если стреляет из пристрелянного револьвера. Если Джон стреляет из непристрелянного револьвера, то он попадает в муху с вероятностью 0, 2. На столе лежит 10 револьверов, из них только 4 пристрелянные. Ковбой Джон видит на стене муху, наудачу хватает первый попавшийся револьвер и стреляет в муху. Найдите вероятность того, что Джон промахнётся.
Решение. По условию задачи составим дерево и найдём необходимые вероятности.
![]()
![]() ![]()
Ответ: 0, 52. 23. Всем пациентам с подозрением на гепатит делают анализ крови. Если анализ выявляет гепатит, то результат анализа называется положительным. У больных гепатитом пациентов анализ даёт положительный результат с вероятностью 0, 9. Если пациент не болен гепатитом, то анализ может дать ложный положительный результат с вероятностью 0, 01. Известно, что 5% пациентов, поступающих с подозрением на гепатит, действительно больны гепатитом. Найдите вероятность того, что результат анализа у пациента, поступившего в клинику с подозрением на гепатит, будет положительным.
Решение. По условию задачи составим дерево и найдём необходимые вероятности.
![]()
![]() ![]()
Ответ: 0, 0545. 24. В Волшебной стране бывает два типа погоды: хорошая и отличная, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0, 8 погода завтра будет такой же, как и сегодня. Сегодня 3 июля, погода в Волшебной стране хорошая. Найдите вероятность того, что 6 июля в Волшебной стране будет отличная погода.
Решение. По условию задачи составим дерево
3 июля
![]() ![]() ![]()
4 июля
5 июля
Указанные события несовместные, вероятность их сумы равна сумме вероятностей этих событий: Ответ: 0, 392.
|