Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Технологии цифровой иерархии






2.1 Технология плезиохронной цифровой иерархии PDH

 

Цифровая аппаратура мультиплексирования и коммутации была разработана в конце 60-х годов компанией AT& T для решения проблемы связи крупных коммутаторов телефонных сетей между собой.

 

Была разработана аппаратура Т1, которая позволяла в цифровом виде мультиплексировать, передавать и коммутировать (на постоянной основе) данные 24 абонентов. Так как абоненты по-прежнему пользовались обычными телефонными аппаратами, то есть передача голоса шла в аналоговой форме, то мультиплексоры Т1 сами осуществляли оцифровывание голоса с частотой 8000 Гц и кодировали голос с помощью импульсно-кодовой модуляции (Pulse Code Modulation, PCM). В результате каждый абонентский канал образовывал цифровой поток данных 64 Кбит/с. Для соединения магистральных АТС каналы Т1 представляли собой слишком слабые средства мультиплексирования, поэтому в технологии была реализована идея образования каналов с иерархией скоростей. Четыре канала типа Т1 объединяются в канал следующего уровня цифровой иерархии - Т2, передающий данные со скоростью 6, 312 Мбит/с, а семь каналов Т2 дают при объединении канал ТЗ, передающий данные со скоростью 44, 736 Мбит/с. Аппаратура T1, T2 и ТЗ может взаимодействовать между собой, образуя иерархическую сеть с магистральными и периферийными каналами трех уровней скоростей.

 

Технология цифровой иерархии была позже стандартизована CCITT. При этом в нее были внесены некоторые изменения, что привело к несовместимости американской и международной версий цифровых сетей. Американская версия распространена сегодня кроме США также в Канаде и Японии (с некоторыми различиями), а в Европе применяется международный стандарт. Аналогом каналов Т в международном стандарте являются каналы типа El, E2 и ЕЗ с другими скоростями - соответственно 2, 048 Мбит/с, 8, 488 Мбит/с и 34, 368 Мбит/с. Американский вариант технологии также был стандартизован ANSI.

 

Несмотря на различия американской и международных версий технологии цифровой иерархии, для обозначения иерархии скоростей принято использовать одни и те же обозначения - DSn (Digital Signal n). В табл. 2 приводятся значения для всех введенных стандартами уровней скоростей обеих технологий.

 

Таблица 2. Иерархия цифровых скоростей

 

На практике в основном используются каналы Т1/Е1 и ТЗ/ЕЗ.

При передаче компьютерных данных канал Т1 предоставляет для пользовательских данных только 23 канала, а 24-й канал отводится для служебных целей, в основном - для восстановления искаженных кадров. Для одновременной передачи как голосовых, так и компьютерных данных используются все 24 канала, причем компьютерные данные передаются со скоростью 56 Кбит/с. Техника использования восьмого бита для служебных целей получила название «кражи бита» (bit robbing).

Пользователь может арендовать несколько каналов 64 Кбит/с (56 Кбит/с) в канале Т1/Е1. Такой канал называется «дробным» (fractional) каналом Т1/Е1. В этом случае пользователю отводится несколько тайм - слотов работы мультиплексора.

Физический уровень технологии PDH поддерживает различные виды кабелей: витую пару, коаксиальный кабель и волоконно-оптический кабель. Основным вариантом абонентского доступа к каналам Т1/Е1 является кабель из двух витых пар с разъемами RJ-48. Две пары требуются для организации дуплексного режима передачи данных со скоростью 1, 544/2, 048 Мбит/с. Для усиления сигнала на линиях Т1 через каждые 1800 м (одна миля) устанавливаются регенераторы и аппаратура контроля линии.

Физический уровень международного варианта технологии определяется стандартом G.703, названием которого обозначается тип интерфейса маршрутизатора или моста, подключаемого к каналу Е1. Американский вариант интерфейса носит название Т1.

Как американский, так и международный варианты технологии PDH обладают несколькими недостатками.

Одним из основных недостатков является сложность операций мультиплексирования и демультиплексирования пользовательских данных. Сам термин «плезиохронный», используемый для этой технологии, говорит о причине такого явления - отсутствии полной синхронности потоков данных при объединении низкоскоростных каналов в более высокоскоростные. Изначально асинхронный подход к передаче кадров породил вставку бита или нескольких бит синхронизации между кадрами. В результате для извлечения пользовательских данных из объединенного канала необходимо полностью демультиплексировать кадры этого объединенного канала.

Для преодоления этого недостатка в сетях PDH реализуют некоторые дополнительные приемы, уменьшающие количество операций демультиплексирования при извлечения пользовательских данных из высокоскоростных каналов. Например, одним из таких приемов является «обратная доставка» (back hauling). Ведет к большому объему ручной работы и ошибкам.

Другим существенным недостатком технологии PDH является отсутствие развитых встроенных процедур контроля и управления сетью. Служебные биты дают мало информации о состоянии канала, не позволяют его конфигурировать и т. п. Нет в технологии и процедур поддержки отказоустойчивости, которые очень полезны для первичных сетей, на основе которых строятся ответственные междугородные и международные сети. В современных сетях управлению уделяется большое внимание, причем считается, что управляющие процедуры желательно встраивать в основной протокол передачи данных сети.

Третий недостаток состоит в слишком низких по современным понятиям скоростях иерархии PDH. Волоконно-оптические кабели позволяют передавать данные со скоростями в несколько гигабит в секунду по одному волокну, что обеспечивает консолидацию в одном кабеле десятков тысяч пользовательских каналов, но это свойство технология PDH не реализует - ее иерархия скоростей заканчивается уровнем 139 Мбит/с.

Все эти недостатки устранены в новой технологии первичных цифровых сетей, получившей название синхронной цифровой иерархии - Synchronous DigitalHierarchy, SDH.

2.2 Технология синхронной цифровой иерархии SONET/SDH

Технология синхронной цифровой иерархии первоначально была разработана компанией Bellcore под названием «Синхронные оптические сети» - Synchronous Optical NETs, SONET. Первый вариант стандарта появился в 1984 году. Основной целью разработчиков международного стандарта было создание такой технологии, которая позволяла бы передавать трафик всех существующих цифровых каналов (как американских Т1 - ТЗ, так и европейских Е1 - ЕЗ) в рамках высокоскоростной магистральной сети на волоконно-оптических кабелях и обеспечила бы иерархию скоростей, продолжающую иерархию технологии PDH, до скорости в несколько гигабит в секунду.

В результате длительной работы удалось разработать международный стандарт Synchronous Digital Hierarchy, SDH (спецификации G.707-G.709), а также доработать стандарты SONET таким образом, что аппаратура и стеки SDH и SONET стали совместимыми и могут мультиплексировать входные потоки практически любого стандарта PDH - как американского, так и европейского. Технология SONET/ SDH фактически стала считаться единой технологией. В России применяются стандарты и адаптированная терминология SDH.

Иерархия скоростей при обмене данными между аппаратурой SONET/SDH, которую поддерживает технология SONET/SDH, представлена в таблице.

В стандарте SDH все уровни скоростей (и, соответственно, форматы кадров для этих уровней) имеют общее название: STM-n - Synchronous Transport Module level n. В технологии SONET существуют два обозначения для уровней скоростей: STS-n - Synchronous Transport Signal level n, употребляемое при передаче данных электрическим сигналом, и ОС-n - Optical Carrier level n, употребляемое при передаче данных световым лучом по волоконно-оптическому кабелю. Форматы кадров STS и ОС идентичны.

Как видно из таблицы, стандарт SONET начинается со скорости 51, 84 Мбит/с, а стандарт SDH - со скорости 155, 52 Мбит/с, равной утроенной начальной скорости SONET. Международный стандарт определил начальную скорость иерархии в 155, 52 Мбит/с, чтобы сохранялась стройность и преемственность технологии SDH с технологией PDH - в этом случае канал SDH может передавать данные уровня DS-4, скорость которых равна 139, 264 Мбит/с. Любая скорость технологии SONET/ SDH кратна скорости STS-1. Некоторая избыточность скорости 155, 52 Мбит/с для передачи данных уровня DS-4 объясняется большими накладными расходами на служебные заголовки кадров SONET/SDH.

Кадры данных технологий SONET и SDH, называемые также циклами, по форматам совпадают, естественно начиная с общего уровня STS-3/STM-1. Эти кадры обладают весьма большой избыточностью, так как передают большое количество служебной информации, которая нужна для:

обеспечения гибкой схемы мультиплексирования потоков данных разных скоростей, позволяющих вставлять (add) и извлекать (drop) пользовательскую информацию любого уровня скорости, не демультиплексируя весь поток;

обеспечения отказоустойчивости сети;

поддержки операций контроля и управления на уровне протокола сети;

синхронизации кадров в случае небольшого отклонения частот двух сопрягаемых сетей.

Стек протоколов и основные структурные элементы сети SONET/SDH показаны на рис. 6.7.

Рис. 6.7. Стек протоколов и структура сети SONET/SDH

Ниже перечислены устройства, которые могут входить в сеть технологии SONET/ SDH.

Терминальные устройства (Terminal, Т), называемые также сервисными адаптерами (Service Adapter, SA), принимают пользовательские данные от низкоскоростных каналов технологии PDH (типа Т1/Е1 или ТЗ/ЕЗ) и преобразуют их в кадры STS-n. (Далее аббревиатура STS-n используется как общее обозначение для кадров SONET/SDH.)

Мультиплексоры (Muliplexers) принимают данные от терминальных устройств и мультиплексируют потоки кадров разных скоростей STS-n в кадры более высокой иерархии STS-m.

Мультиплексоры «ввода-вывода» (Add-Drop Multiplexers) могут принимать и передавать транзитом поток определенной скорости STS-n, вставляя или удаляя «на ходу», без полного демультиплексирования, пользовательские данные, принимаемые с низкоскоростных входов.

Цифровые кросс-коннекторы (Digital Cross-Connect, DCC), называемые также аппаратурой оперативного переключения (АОП), предназначены для мультиплексирования и постоянной коммутации высокоскоростных потоков STS-n различного уровня между собой (на рис. 6.7 не показаны). Кросс-коннектор представляет собой разновидность мультиплексора, основное назначение которого - коммутация высокоскоростных потоков данных, возможно, разной скорости. Кросс-коннекторы образуют магистраль сети SONET/SDH.

Регенераторы сигналов, используемые для восстановления мощности и формы сигналов, прошедших значительное расстояние по кабелю. На практике иногда сложно провести четкую грань между описанными устройствами, так как многие производители выпускают многофункциональные устройства, которые включают терминальные модули, модули «ввода-вывода», а также модули кросс-коннекторов.

Отказоустойчивость сети SONET/SDH встроена в ее основные протоколы. Этот механизм называется автоматическим защитным переключением - Automatic Protection Switching, APS. Существуют два способа его работы. В первом способе защита осуществляется по схеме 1: 1. Для каждого рабочего волокна (и обслуживающего его порта) назначается резервное волокно. Во втором способе, называемом 1: n, для защиты n волокон назначается только одно защитное волокно.

В схеме защиты 1: 1 данные передаются как по рабочему, так и по резервному волокну. При выявлении ошибок принимающий мультиплексор сообщает передающему, какое волокно должно быть рабочим. Обычно при защите 1: 1 используется схема двух колец, похожая на двойные кольца FDDI (рис. 6.10), но только с одновременной передачей данных в противоположных направлениях. При обрыве кабеля между двумя мультиплексорами происходит сворачивание колец, и, как и в сетях FDDI, из двух колец образуется одно рабочее.

Рис. 3 - Использование двойных колец для обеспечения отказоустойчивости сети SONET/SDH

Применение схемы резервирования 1: 1 не обязательно требует кольцевого соединения мультиплексоров, можно применять эту схему и при радиальном подключении устройств, но кольцевые структуры решают проблемы отказоустойчивости эффективнее - если в сети нет колец, радиальная схема не сможет ничего сделать при обрыве кабеля между устройствами.

 

Управление, конфигурирование и администрирование сети SONET/SDH также встроено в протоколы. Служебная информация протокола позволяет централизованно и дистанционно конфигурировать пути между конечными пользователями сети, изменять режим коммутации потоков в кросс-коннекторах, а также собирать подробную статистику о работе сети. Существуют мощные системы управления сетями SDH, позволяющие прокладывать новые каналы простым перемещением мыши по графической схеме сети.

Выводы

- Цифровые выделенные каналы образуются первичными сетями двух поколений технологии - PDH и SONET/SDH. Эти технологии существуют в двух вариантах - североамериканском и европейском. Последний является также международным, соответствующим рекомендациям ITU-T. Два варианта технологий PDH несовместимы.

- Технология SONET/SDH ориентируется на использование волоконно-оптических кабелей. Эта технология также включает два варианта - североамериканский (SONET) и европейско-международный (SDH), но в данном случае они являются совместимыми.

- Технология SONET/SDH продолжает иерархию скоростей каналов PDH - до 10 Гбит/с. Технология основана на полной синхронизации между каналами и устройствами сети, которая обеспечивается наличием центрального пункта распределения синхронизирующих импульсов для всей сети.

- Каналы иерархии PDH являются входными каналами для сетей технологии SONET/SDH, которая переносит ее по своим магистральным каналам.

- Сети SONET/SDH обладают встроенной отказоустойчивостью за счет избыточности своих кадров и способности мультиплексоров выполнять реконфигурирование путей следования данных. Основной отказоустойчивой конфигурацией является конфигурация двойных волоконно-оптических колец.

- Внутренние протоколы SONET/SDH обеспечивают мониторинг и управление первичной сетью, в том числе удаленное создание постоянных соединений между абонентами сети.

- Первичные сети SONET/SDH являются основой для большинства телекоммуникационных сетей: телефонных, компьютерных, телексных.

Контрольные вопросы:

1 Можно ли использовать обычное абонентское окончание телефонной аналоговой сети, имеющееся в офисе, для подключения к каналу Е1?

2 Сколько каналов Т1 можно передать в одном канале STS-1?

3 Описать систему Sonet

 

Лекция 6

 

Тема: Локальні мережі, Основні поняття та визначення, Технологія Ethernet.

 

 

Цель: Определится с основными понятиями локальных сетей. Рассмотреть технологию Ethernet

План:

1. Определение понятия: локальные сети.

2. Технология Ethernet

2.1 Определение понятия

2.2 Обнаружение коллизий

2.3 Физическая среда Ethernet. Производительность Ethernet. Спецификации физической среды Ethernet.

3. Выводы

4. Контрольные вопросы

 

1. Локальные сети

К локальным сетям - Local Area Networks (LAN) - относят сети компьютеров, сосредоточенные на небольшой территории (обычно в радиусе не более 1-2 км). В общем случае локальная сеть представляет собой коммуникационную систему, принадлежащую одной организации. Из-за коротких расстояний в локальных сетях имеется возможность использования относительно дорогих высококачественных линий связи, которые позволяют, применяя простые методы передачи данных, достигать высоких скоростей обмена данными порядка 100 Мбит/с. В связи с этим услуги, предоставляемые локальными сетями, отличаются широким разнообразием и обычно предусматривают реализацию в режиме on-line.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.011 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал