![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Живых организмов, биологических систем и процессов».
Понятие биотехнология может быть представлено многими определениями:
• использование биологических объектов, систем или процессов для производства необходимых продуктов или для нужд сервисной индустрии; • комплексное применение биохимических, микробиологических и инженерных знаний с целью промышленного использования потенциальных возможностей микроорганизмов, культур клеток и отдельных их компонентов или систем; • технологическое использование биологических явлений для воспроизводства и получения (изготовления) различных типов полезных продуктов; • приложение научных и инженерных принципов для обработки материалов биологическими агентами с целью получения необходимых продуктов или создания сервисных технологий. Биотехнология на самом деле не что иное, как название, данное набору технических приемов (подходов) и процессов, основанных на использовании для этих целей биологических объектов. Термин биотехнология включает составляющие «биос», «техне», «логос» греческого происхождения (от греч. «биос» – жизнь, «техне» – искусство, мастерство, умение и «логос» – понятие, учение). Таким образом, как это явствует из приведенных определений, биотехнология по существу сводится к использованию микроорганизмов, животных и растительных клеток или же их ферментов для синтеза, разрушения или трансформации (превращения) различных материалов с целью получения полезных продуктов для различных нужд человека. Биотехнологические направления имеют своей целью создание и практическое внедрение (т. е. практическое использование): • новых биологически активных веществ и лекарственных препаратов, используемых в здравоохранении для диагностики, профилактики и лечения различных заболеваний; • биологических средств защиты сельскохозяйственных растений от возбудителей заболеваний и вредителей, бактериальных удобрений и регуляторов роста растений и животных; новых сортов растений, устойчивых к разного рода неблагоприятным воздействиям (факторам внешней среды); новых пород животных с полезными свойствами (трансгенные животные); • ценных кормовых добавок для повышения продуктивности сельскохозяйственных животных (кормового белка, аминокислот, витаминов, ферментов, способствующих повышению усвояемости кормов, и т. п.);
• новых биоинженерных методов для получения высокоэффективных препаратов различного назначения, используемых в сельском хозяйстве и ветеринарии; • новых технологий создания и получения хозяйственно ценных продуктов для пищевой, химической и микробиологической промышленности; • эффективных технологий переработки сельскохозяйственных, промышленных и бытовых отходов для получения продуктов, которые могут использоваться в других отраслях хозяйственной деятельности человека (например, биогаза, удобрений, топлива для автомобилей и т. п.). Само собой разумеется, что такие комплексные задачи требуют интеграции различных отраслей научных и технических знаний и характеризуют биотехнологию как ряд перспективных технологий, которые найдут применение в самых разнообразных индустриальных направлениях. Интеграция биологии, химии и инженерных приемов в биотехнологии осуществляется таким путем, чтобы обеспечить максимальное использование потенциальных возможностей всех входящих в нее областей знаний. И все же, несмотря на комплексность биотехнологии, ее нельзя рассматривать как нечто единое целое, наподобие микроэлектроники. Скорее она должна рассматриваться как ряд перспективных технологий, сочетания которых будут постоянно варьировать в зависимости от конкретных практических задач. Биотехнология – междисциплинарная область научно-технического прогресса, возникшая на стыке биологических, химических и технических знаний и призванная к созданию новых биотехнологических процессов, которые в большинстве случаев будут осуществляться при низких температурах, требовать небольшого (меньшего) количества энергии и будут базироваться преимущественно на дешевых субстратах, используемых в качестве первичного сырья. Однако следует отдавать себе отчет в том, что биотехнология не является чем-то новым, ранее не известным, а представляет собой развитие и расширение набора технологических приемов, корни которых появились тысячи лет тому назад. Биотехнология включает многие традиционные процессы, давно известные и давно используемые человеком. Это пивоварение, хлебопечение, изготовление вина, производство сыра, приготовление многих восточных пряных соусов, а также разнообразные способы утилизации отходов. Во всех перечисленных процессах использовались
биологические объекты (пусть даже без достаточных знаний о них) и все эти процессы на протяжении многих лет совершенствовались, правда эмпирически. Начало этого этапа биотехнологии теряется в глубине веков и он продолжался примерно до конца XIX в. Работы великого французского ученого Луи Пастера (1822–1895) заложили фундамент практического использования достижений микробиологии и биохимии в традиционных биотехнологиях (пивоварение, виноделие, производство уксуса) и ознаменовали начало нового, научного периода развития биотехнологии. Для этого периода характерно развитие промышленной биотехнологии, в особенности ферментационных процессов в промышленных масштабах. Были разработаны стерильные процессы производства путем ферментации ацетона, глицерина. Интенсивно изучаются основные группы микроорганизмов – возбудителей процессов брожения, исследуются биохимические особенности данных процессов. После открытия Александром Флемингом пенициллина разрабатываются процессы и аппараты для глубинного культивирования продуцентов, что резко удешевило производство данного антибиотика, и он стал доступным для широкого использования в клинической практике во время второй мировой войны. После войны быстрыми темпами развивались процессы ферментации для производства антибиотиков, стероидных гормонов, а в 1961 г. возник журнал «Биотехнология и биоинженерия» и снова термин «биотехнология» стал применяться для обозначения процессов, которые относили к области промышленной микробиологии. Однако термин «биотехнология» в большей степени стал ассоциироваться с новым этапом развития этой науки, начало которому положено в 1973 г., когда Стэнли Коэн и Герберт Бойер получили рекомбинантные плазмиды и произвели трансформацию ими клеток E.coli. В течение четырех лет после открытия рекомбинантных ДНК- технологий появились штаммы бактерий, продуцирующие инсулин и человеческий гормон роста. Это привело к притоку инвестиций в новые компании. В настоящее время в США только микробная (основанная на культивировании генетически модифицированных микроорганизмов) биотехнология представлена 1300 компаниями, насчитывающими 153 000 служащих, с годовым доходом 19, 6 млрд долл. и с продажами 13, 4 млрд долл. В Канаде 282 компании с годовым доходом 1, 1 млрд долл., В Японии с годовым доходом 10, 0 млрд долл., в Европе 1178 компаний (45 000 служащих) с годовым доходом 3, 7 млрд долл. Основные продукты,
получаемые с помощью микроорганизмов и рекомбинантных ДНК- технологий – животные пептиды, такие как гормоны, факторы роста, ферменты, антитела и биологические модификаторы иммунного ответа. По приблизительной оценке, общемировая рыночная стоимость растениеводческой продукции, полученной на основании ДНК- технологий, достигнет к 2010 г. 30–40 млрд. долларов. Мировой рынок биотехнологической продукции составляет ежегодно около 150 млрд. долл. Во многих странах мира приняты национальные программы по биотехнологии. Так, например, в США ежегодные затраты на биотехнологию составляют 2-3 млрд. долл. В Германии на 2001 год выделено около 2 млрд. марок на новую программу по биотехнологии. В табл. 1 приведены основные факты, характеризующие развитие биотехнологии. Вполне обоснованно предполагать, что скорость практического использования биотехнологических достижений в меньшей степени будет определяться научными и техническими условиями, а больше будет зависеть от таких факторов, как капиталовложения заинтересованных отраслей промышленности, улучшение технологических схем, рыночных ситуаций и экономичности новых методов по сравнению с недавно внедренными технологиями иного типа. Отрасли промышленности, с которыми будет конкурировать биотехнология, включают изготовление пищи для людей и животных, создание и производство новых материалов, призванных заменить изготовляемые с помощью нефтехимии, создание альтернативных источников энергии, разработку технологии безотходных производств, контроль и устранение загрязнений и сельское хозяйство. Конечно, биотехнология революционизирует и многие разделы медицины, ветеринарии и фармацевтической промышленности. Вышеизложенное однозначно предполагает рассмотрение биотехнологии как межотраслевой дисциплины, основанной на применении многопрофильной стратегии (различных подходов) для решения различных проблем. Таблица 1 История развития молекулярной биотехнологии Дата Событие
КарлЭрекиввелтермин «биотехнология» 1943 Произведен пенициллин в промышленном масштабе
1944 Эвери, Мак Леод и Мак Карти показали, что генетический материал представлен ДНК 1953 Уотсон и Крик определили структуру молекулы ДНК 1961 Учрежден журнал “Biotechnology and Bioengineering” 1961– Расшифрован генетический код 1970 Выделена первая рестрицирующая эндонуклеаза 1972 Корана и др. синтезировали полноразмерный ген тРНК 1973 Бойер и Коэн положили начало технологии рекомбинантных ДНК 1975 Колер и Мильштейн описали получение моноклональных антител 1976 Изданы первые руководства, регламентирующие работы с рекомбинантными ДНК 1976 Разработаны методы определения нуклеотидной последовательности ДНК 1978 Фирма Genentech выпустила человеческий инсулин, полученный с помощью E. coli 1982 Разрешена к применению в Европе первая вакцина для животных, полученная по технологии рекомбинантных ДНК 1983 Для трансформации растений применены гибридные Ti-плазмиды 1988 Создан метод полимеразной цепной реакции (ПЦР) 1990 В США утвержден план испытаний генной терапии с использованием соматических клеток человека 1990 Официально начаты работы над проектом «Геном человека» 1994– Опубликованы подробные генетические и физические карты хромосом человека 1996 Ежегодный объем продаж первого рекомбинантного белка (эритропоэтина) превысил 1 млрд. долларов 1997 Клонировано млекопитающее из дифференцированной соматической клетки Биотехнология применяет методы, заимствованные из химии, микробиологии, биохимии, молекулярной биологии, химической технологии и компьютерной техники с целью создания новых разработок, развития и оптимального использования процессов, в которых каталитические реакции играют фундаментальную и незаменимую роль. Любой биотехнолог должен стремиться к достижению тесного кооперирования со специалистами других смежных (близких) дисциплин, таких, как медицина, пищевая промышленность, фармацевтика и химическая индустрия, защита окружающей среды и процессы переработки продуктов, представляющих собой отходы различных производств. Главная причина успехов биотехнологии кроется в разительных успехах и быстром прогрессе молекулярной биологии, в частности в разработке технологии рекомбинантных молекул ДНК. С помощью этой
технологии оказалось возможным непосредственно манипулировать с наследственным материалом клеток, получая новые сочетания полезных признаков и способностей. Возможности этих технических приемов, которые впервые были разработаны в лабораториях, вскоре оказались вполне приемлемыми в промышленных условиях. Однако, несмотря на определенные, а порой и весьма значительные выгоды, которые несет технология рекомбинантных молекул, постоянно следует учитывать возможные опасности, связанные с вмешательством человека в природу. В настоящее время развитие биотехнологии осуществляется со скоростью, напоминающей таковую при становлении микроэлектронной промышленности в середине 70-х годов. Ни для кого уже не является секретом, что ископаемое топливо (хотя и добываемое в настоящее время с большим избытком), а также другие не восполняемые ресурсы, в один прекрасный день станут крайне ограниченными. И совершенно естественно, что данное обстоятельство уже сейчас заставляет искать новые, более дешевые и лучше сохраняемые источники энергии и питания, которые могли бы восполняться биотехнологическим путем. В этой ситуации страны с климатом, позволяющим ежегодно производить большие количества биомассы, будут находиться в более выгодных условиях по сравнению со странами с менее благоприятными климатическими условиями. В частности, тропические области земного шара в этом отношении имеют существенное преимущество над другими регионами. Следующим фактором, способствующим росту интереса к биотехнологии, является современный мировой спад в химических и инженерных направлениях, обусловленный частичным истощением источников энергии. В силу этого биотехнология рассматривается в качестве одного из важнейших средств рестимуляции (обновления) экономики на основе новых методов, новой технологии и новых сырьевых материалов. Фактически, индустриальный бум 1950-х и 1960-х годов был обусловлен дешевой нефтью, так же как успехи в информационной технологии обусловили в 1970-х и 1980-х годах развитие микроэлектроники. И есть основания полагать, что 2000-е годы станут эрой биотехнологии. Во всяком случае, в мире отмечается существенный подъем исследований в области молекулярной биологии, возникновение новых биотехнологических компаний, увеличение инвестиций в биотехнологические отрасли промышленности (как национальными компаниями, так и отдельными лицами), а также рост фундаментальных
знаний, увеличение количества источников информации и средств информатики. Многие биотехнологические процессы могут рассматриваться как имеющие три главных стержневых компонента: первая часть состоит в получении наиболее оптимальных катализаторов специфических процессов, вторая часть сводится к обеспечению по возможности оптимальных условий для осуществления требуемого каталитического процесса и третья – связана с отделением и очисткой целевого продукта или продуктов из ферментационной смеси. В большинстве случаев наиболее эффективной, стабильной и удобной формой для катализа биотехнологических процессов являются цельные организмы, вследствие чего в биотехнологии широко используются микробиологические процессы. Конечно, это не исключает использование и высших организмов (в частности, культур растительных и животных клеток), которые, несомненно, в будущем будут играть важную роль в биотехнологии. Микроорганизмы обладают огромным генетическим пулом (фондом), позволяющим им осуществлять практически неограниченную биосинтетическую деятельность и потенциал деградации. Кроме того, микроорганизмам присущ исключительно быстрый рост, скорость которого намного превышает скорость роста высших организмов (растений и животных). Указанное свойство позволяет за короткий промежуток времени осуществить синтез больших количеств требуемого продукта в строго контролируемых условиях. Существенным моментом первого компонента биотехнологии является селекция и улучшение объекта с помощью различных генетических методов, а в последнее время с использованием высокоэффективных приемов молекулярной биологии, которые, как уже упоминалось, способны обеспечить конструирование организмов с новыми биохимическими возможностями. Во многих случаях катализатор используется в изолированной форме в виде очищенного фермента, для получения которого в настоящее время разработаны эффективные методы выделения и очистки, а также методы стабилизации. Второй компонент биотехнологии связан с изготовлением систем, обеспечивающих оптимальное функционирование организмов- продуцентов или чистых ферментов. Сюда относятся специальные знания о химии процессов, а также сведения об инженерном обеспечении конструирования и изготовления этих систем.
Наконец, третий компонент представляет собой довольно сложную и дорогую процедуру биотехнологического процесса – выделение и очистку целевого продукта. Этот компонент существенно увеличивает стоимость всего процесса и может составлять до 70% стоимости готового коммерческого препарата. Многоэтапность биотехнологических процессов определяет необходимость привлечения к их осуществлению специалистов самого различного профиля: генетиков и молекулярных биологов, биохимиков, вирусологов, микробиологов и клеточных физиологов, инженеров- технологов, конструкторов биотехнологического оборудования и т. п. Сказанное позволяет утверждать, что чистых специалистов- биотехнологов в природе не существует, да такого специалиста нельзя себе и представить. Поэтому в биотехнологии с равным успехом работают и микробиологи, и генетики, и биохимики, и клеточные и генетические инженеры, и конструкторы, и т. д. и т. п., от деятельности которых зависит пpoгpeсс и успех данной отрасли. Однако необходимо отдавать себе отчет в том, что на развитие биотехнологии существенное влияние могут оказывать деятельность различных политических и экономических сил.
2. Выбор биотехнологических объектов Главным звеном биотехнологического процесса, определяющим всю его сущность, является биологический объект, способный осуществлять определенную модификацию исходного сырья и образовывать тот или иной необходимый продукт. В качестве таких объектов биотехнологии могут выступать клетки микроорганизмов, животных и растений,
|