Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Вавилонская поместная нумерация
В древнем Вавилоне примерно за 40 веков до нашего времени создалась поместная (позиционная) нумерация, т.е. такой способ изображения чисел, при котором одна и та же цифра может обозначать разные числа, смотря по месту, занимаемому этой цифрой. Наша теперешняя нумерация - тоже поместная, однако в вавилонской поместной нумерации ту роль, которую играет у нас число 10, играло число 60, и потому эту нумерацию называют шестидесятеричной. Числа, меньшие 60, обозначались с помощью двух знаков: для единицы и для десятка . Они имели клинообразный вид, так как вавилоняне писали на глиняных дощечках палочками треугольной формы. Эти знаки повторялись нужное число раз. При отсутствии промежуточного разряда применялся знак . Запись вавилонской клинописью чисел до 60
Запись вавилонской клинописью чисел, больших 60
Шестидесятеричная запись целых чисел не получила распространения за пределами ассиро-вавилонского царства, но шестидесятеричные дроби проникли далеко за эти пределы: в страны Среднего Востока, Средней Азии, в Северную Африку и Западную Европу. Они широко применялись, особенно в астрономии, вплоть до изобретения десятичных дробей. Следы шестидесятеричных дробей сохраняются и поныне в делении углового и дугового градуса (а также часа) на 60 минут и минуты на 60 секунд. Позиционные и непозиционные системы счисления Разнообразные системы счисления, которые существовали раньше и которые используются в наше время, можно разделить на непозиционные и позиционные. Знаки, используемые при записи чисел, называются цифрами. В непозиционных системах счисления от положения цифры в записи числа не зависит величина, которую она обозначает. Примером непозиционной системы счисления является римская система, в которой в качестве цифр используются латинские буквы. В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от ее позиции. Количество используемых цифр называется основанием системы счисления. Место каждой цифры в числе называется позицией. Первая известная нам система, основанная на позиционном принципе – шестидесятеричная вавилонская. Цифры в ней были двух видов, одним из которых обозначались единицы, другим – десятки. В настоящее время позиционные системы счисления более широко распространены, чем непозиционные. Это объясняется тем, что они позволяют записывать большие числа с помощью сравнительно небольшого числа знаков. Еще более важное преимущество позиционных систем - это простота и легкость выполнения арифметических операций над числами, записанными в этих системах. Наиболее употребительной оказалась индо-арабская десятичная система. Индийцы первыми использовали ноль для указания позиционной значимости величины в строке цифр. Эта система получила название десятичной, так как в ней десять цифр. Различие между позиционной и непозиционной систем счисления легче всего понять на примере сравнения двух чисел. В позиционной системе счисления сравнение двух чисел происходит следующим образом: в рассматриваемых числах слева направо сравниваются цифры, стоящие в одинаковых позициях. Бó льшая цифра соответствует бó льшему значению числа. Например, для чисел 123 и 234, 1 меньше 2, поэтому число 234 больше, чем число 123. В непозиционной системе счисления это правило не действует. Примером этого может служить сравнение двух чисел IX и VI. Несмотря на то, что I меньше, чем V, число IX больше, чем число VI. Основание системы счисления, в которой записано число, обычно обозначается нижним индексом. Например, 5557 – число, записанное в семеричной системе счисления. Если число записано в десятичной системе, то основание, как правило, не указывается. Основание системы – это тоже число, и его указывают в обычной десятичной системе. Любое целое число в позиционной системе можно записать в форме многочлена: Хs={AnAn-1An-2...A2A1}s =An·Sn-1+An-1·Sn-2+An-2·Sn-3+...+A2·S1+A1·S0 где S - основание системы счисления, Аn - цифры числа, записанного в данной системе счисления, n - количество разрядов числа. Так, например число 629310 запишется в форме многочлена следующим образом: 629310=6·103 + 2·102 + 9·101 + 3·100 Примеры позиционных систем счисления: · Двоичная (или система счисления с основанием 2) это положительная целочисленная позиционная (поместная) система счисления, позволяющая представить различные численные значения с помощью двух символов. Чаще всего это 0 и 1. · Восьмеричная — позиционная целочисленная система счисления с основанием 8. Для представления чисел в ней используются цифры 0 до 7. Восьмеричная система часто используется в областях, связанных с цифровыми устройствами. Ранее широко использовалась в программировании и компьютерной документации, однако в настоящее время почти полностью вытеснена шестнадцатеричной. · Десятичная система счисления — позиционная система счисления по целочисленному основанию 10. Наиболее распространённая система счисления в мире. Для записи чисел наиболее часто используются символы 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, называемые арабскими цифрами. · Двенадцатеричная (широко использовалась в древности, в некоторых частных областях используется и сейчас) — позиционная система счисления с целочисленным основанием 12. Используются цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B. · Некоторые народы Нигерии и Тибета до сих пор используют двенадцатиричную систему счисления, но отголоски ее можно найти практически в любой культуре. · В русском языке есть слово " дюжина", в английском " dozen", в некоторых местах слово двенадцать употребляют вместо «десять», как круглое число, например, подождите 12 минут. · Шестнадцатеричная (наиболее распространена в программировании, а также в шрифтах) — позиционная система счисления по целочисленному основанию 16. Обычно в качестве шестнадцатеричных цифр используются десятичные цифры от 0 до 9 и латинские буквы от A до F для обозначения цифр от 10 до 15. Широко используется в низкоуровневом программировании и вообще в компьютерной документации, поскольку в современных компьютерах минимальной единицей памяти является 8-битный байт, значения которого удобно записывать двумя шестнадцатеричными цифрами. · Шестидесятеричная (измерение углов и, в частности, долготы и широты) — позиционная система счисления по целочисленному основанию 60. Использовалась в древние времена на Ближнем Востоке. Последствиями этой системы счисления является деление углового и дугового градуса (а также часа) на 60 минут и минуты на 60 секунд. Наибольший интерес при работе на ЭВМ представляют системы счисления с основаниями 2, 8 и 16. Этих систем счисления обычно хватает для полноценной работы как человека, так и вычислительной машины, однако иногда в силу различных обстоятельств все-таки приходится обращаться к другим системам счисления, например к троичной, семеричной или системе счисления по основанию 32. Чтобы оперировать с числами, записанными в таких нетрадиционных системах, нужно иметь в виду, что принципиально они ничем не отличаются от привычной десятичной. Сложение, вычитание, умножение в них осуществляется по одной и той же схеме. Другие системы счисления не используются в основном, потому что в повседневной жизни люди привыкли пользоваться десятичной системой счисления, и не требуется никакая другая. В вычислительных же машинах используется двоичная система счисления, так как оперировать числами, записанными в двоичном виде, довольно просто. Часто в информатике используют шестнадцатеричную систему, так как запись чисел в ней значительно короче записи чисел в двоичной системе. Может возникнуть вопрос: почему бы не использовать для записи очень больших чисел систему счисления, например по основанию 50? Для такой системы счисления необходимы 10 обычных цифр плюс 40 знаков, которые соответствовали бы числам от 10 до 49 и вряд ли кому-нибудь понравится работать с этими сорока знаками. Поэтому в реальной жизни системы счисления по основанию, большему 16, практически не используются. Двоичная система счисления Двоичная система счисления была придумана математиками и философами ещё до появления компьютеров (XVII — XIX вв.). Некоторые идеи, лежащие в основе двоичной системы, по существу были известны в Древнем Китае. Об этом свидетельствует классическая книга “И цзин” (“Книга перемен”). Идея двоичной системы была известна и древним индусам. В Европе двоичная система, видимо, появилась уже в новое время. Об этом свидетельствует система объемных мер, применяемая английскими виноторговцами: два джилла = полуштоф, два полуштофа = пинта, две пинты = кварта, две кварты = потл, два потла = галлон, два галлона = пек, два пека = полубушель, два полубушеля = бушель, два бушеля = килдеркин, два килдеркина = баррель, два барреля = хогзхед, два хогзхеда = пайп, два пайпа = тан. И в английских мерах веса можно увидеть двоичный принцип. Так, фунт (обычный, не тройский) содержит 16 унций, а унция — 16 дрэмов. Тройский фунт содержит 12 тройских унций. В английских аптекарских мерах веса, однако, унция содержит восемь дрэмов. Пропагандистом двоичной системы был знаменитый Г.В. Лейбниц (получивший, от Петра I звание тайного советника). Он отмечал особую простоту алгоритмов арифметических действий в двоичной арифметике в сравнении с другими системами и придавал ей определенный философский смысл. Говорят, что по его предложению была выбита медаль с надписью: “Для того чтобы вывести из ничтожества все, достаточно единицы”. Известный современный математик Т.Данциг о нынешнем положении дел сказал: “Увы! То, что некогда возвышалось как монумент монотеизму, очутилось в чреве компьютера”. Потом о двоичной системе забыли. В течение почти 200 лет на эту тему не было издано ни одного труда. Вернулись к ней только в 1931 году, когда были продемонстрированы некоторые возможности практического применения двоичного счисления. В 1936 — 1938 годах американский инженер и математик Клод Шеннон нашёл замечательные применения двоичной системы при конструировании электронных схем. Двоичная система счисления (Бинарная система счисления, binary) -- позиционная система счисления с основанием 2. Для представления чисел используются символы 0 и 1. Главное достоинство двоичной системы — простота алгоритмов сложения, вычитания, умножения и деления. Таблица умножения в ней совсем не требует ничего запоминать: ведь любое число, умноженное на ноль, равно нулю, а умноженное на единицу равно самому себе. И при этом никаких переносов в следующие разряды, а они есть даже в троичной системе. Рассмотрим подробнее, как происходит процесс умножения двоичных чисел. Пусть надо умножить число 1101 на 101 (оба числа в двоичной системе счисления). Машина делает это следующим образом: она берет число 1101 и, если первый элемент второго множителя равен 1, то она заносит его в сумму. Затем сдвигает число 1101 влево на одну позицию, получая тем самым 11010, и если, второй элемент второго множителя равен единице, то тоже заносит его в сумму. Если элемент второго множителя равен нулю, то сумма не изменяется. Таблица деления сводится к двум равенствам 0/1 = 0, 1/1 = 1, благодаря чему деление столбиком многозначных двоичных чисел делается гораздо проще, чем в десятичной системе и, по существу, сводится к многократному вычитанию. Выполнение основной процедуры - выбор числа, кратного делителю и предназначенного для уменьшения делимого, здесь проще, так как таким числом могут быть либо 0, либо сам делитель. Сложение многоразрядных двоичных чисел осуществляется в соответствии с таблицей с учетом возможных переносов из младшего разряда в старшие. Вот как выглядит таблица сложения в двоичной системе:
При выполнении операции вычитания всегда из большего по абсолютной величине числа вычитается меньшее и у результата ставится соответствующий знак. Таблица разности двоичных чисел:
Существует более легкий способ вычитания в двоичной системе, для этого необходимо каждую цифру 1 вычитаемого поменять на цифру 0, а цифру 0 поменять на цифру 1 и выполнить сложение получившихся чисел. Рассмотрим пример: 1100112-10012=1100112-0010012=1100112+1101102=1010012 Недостатком двоичной системы является то, что она не привычна для человека. Значит, неудобством этой системы счисления (как, впрочем, и всякой другой, отличной от десятичной) является необходимость перевода исходных данных из десятичной системы в двоичную при вводе их в машину и обратного перевода из двоичной в десятичную при выводе результатов вычислений. Двоичное кодирование в компьютере В конце ХХ века, века компьютеризации, человечество пользуется двоичной системой ежедневно, так как вся информация, обрабатываемая современными ЭВМ, хранится в них в двоичном виде. Каким же образом осуществляется это хранение? Каждый регистр арифметического устройства ЭВМ, каждая ячейка памяти представляют собой физическую систему, состоящую из некоторого числа однородных элементов. Любой такой элемент способен находиться в нескольких состояниях и служит для изображения одного из разрядов числа. Именно поэтому каждый элемент ячейки называют разрядом. Нумерацию разрядов в ячейке принято вести справа налево, самый левый разряд имеет порядковый номер 0. Если при записи чисел в ЭВМ мы хотим использовать обычную десятичную систему счисления, то мы должны двоичное кодирование информации уметь получать 10 устойчивых состояний для каждого разряда (как на счетах при помощи костяшек). Такие машины существуют. Однако конструкция элементов такой машины оказывается чрезвычайно сложной, что сказывается на надежности и скорости работы ЭВМ. Наиболее надежным и дешевым является устройство, каждый разряд которого может принимать два состояния: намагничено – не намагничено, высокое напряжение – низкое напряжение и т.д. В современной электронике развитие аппаратной базы ЭВМ идет именно в этом направлении. Следовательно, использование двоичной системы счисления в качестве внутренней системы представления информации вызвано конструктивными особенностями элементов вычислительных машин. В современные компьютеры мы можем вводить текстовую информацию, числовые значения, а также графическую и звуковую информацию. Количество информации, хранящейся в ЭВМ, измеряется ее «длиной» (или «объемом»), которая выражается в битах (от английского binary digit – двоичная цифра). Бит – минимальная единица измерения информации. В каждом бите может храниться 0 или 1. Для измерения объема хранимой информации используются следующие единицы: 1 байт = 8 бит; 1 кбайт (килобайт) = 1024 байт = 210 байт; 1 Мбайт (мегабайт) = 1024 кбайт = 210кбайт = 220байт; 1 Гбайт (гигабайт) = 1024 Мбайт = 210Мбайт = 220кбайт = 230байт. Число 1024 как множитель при переходе к более высшей единице измерения имеет своим происхождением двоичную систему счисления (1024 – это десятая степень двойки): Все позиционные системы счисления являются равноправными, но в разных случаях удобнее пользоваться разными системами. Из всех позиционных систем счисления наибольшее распространение, за исключением десятичной, получила двоичная система счисления. В первую очередь это связано с надежностью представления информации: при ее кодировании, передаче и декодировании вероятность ошибки (потери информации) мала по сравнению с тем, когда при представлении данной информации используются другие системы счисления. Двоичная система проста, так как для представления информации в ней используются всего два состояния или две цифры. Такое представление информации принято называть двоичным кодированием. Представление информации в двоичной системе использовалось человеком с давних времен. Так, жители островов Полинезии передавали необходимую информацию при помощи барабанов: чередование звонких и глухих ударов. Звук над поверхностью воды распространялся на достаточно большое расстояние, таким образом «работал» полинезийский телеграф. В телеграфе в XIX–XX веках информация передавалась с помощью азбуки Морзе – в виде последовательности из точек и тире. Часто мы договариваемся открывать входную дверь только по «условному сигналу» – комбинации коротких и длинных звонков. Самюэл Морзе в 1838 г. изобрел код – телеграфную азбуку – систему кодировки символов короткими и длинными посылками для передачи их по линиям связи, известную как «код Морзе». Современный вариант международного «кода Морзе» (International Morse) появился совсем недавно – в 1939 году, когда была проведена последняя корректировка. Двоичная система используется для решения головоломок и построения выигрышных стратегий в некоторых играх.
|