Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Нарушения электролитного обмена






Минеральные вещества организма составляют около 4% от массы тела. Они находятся в растворенном состоянии в виде электролитов в экстра- и интрацеллюлярной среде, в связи с белками, в составе различных органических соединений, а также в минеральной фазе обызвествленных тканей (скелета и зубов). Методом радиоактивной индикации установлено, что обызвествленные ткани являются важным депо минеральных элементов. Значительная часть кальция, фосфата, натрия и других минеральных веществ скелета образуют лабильную фракцию, которая может быть мобилизована для компенсации расстройств минерального обмена.

Электролиты, растворенные в жидкостях организма, обеспечивают постоянство осмотического давления внутренней среды, а их соотношение во многом определяет кислотно-основное состояние. Поэтому нарушение обмена электролитов тесно связано с расстройством водного обмена и кислотно-основного баланса.

Нарушение обмена натрия, калия, магния. Натрий — главный катион внеклеточной среды, который вместе с соответствующими анионами (прежде всего Сl-) представляет в ней более 90% осмотически активных веществ. Концентрация Na+ в экстрацеллюлярной жидкости достигает 140 ммоль/л, в то время как во внутриклеточной среде — лишь около 20 ммоль/л. Общее содержание натрия в организме человека превышает 100 г (примерно 0, 14% от массы тела), причем более трети этого количества сосредоточено в скелете. Лабильная (мобилизуемая) фракция составляет около половины натрия обызвествленных тканей и по своей массе в 2 — 3 раза превышает натрий внутрисосудистой жидкости. В нормальных условиях суточный баланс составляет около 4 — 5 г натрия, поступающего в организм с пищей и питьем. Большая часть натрия выделяется из организма с мочой (75 — 95%) и потом (2 — 10%).

Нарушение обмена натрия тесно связано с нарушением водного равновесия. Отрицательный баланс натрия возможен при повышенной потере его с мочой, потом, пищеварительными секретами (понос) или экссудатом (ожог) (см. выше — " Обезвоживание"). Особенно большое значение имеет нарушение реабсорбции натрия в канальцах нефронов, которое наблюдается при недостаточной выработке альдостерона (аддисонова болезнь), при избыточной продукции АНФ в предсердиях, простагландинов Е2 и I2 (простациклина) в почках, а также под влиянием салуретиков: ингибиторов карбоангидразы (диакарб), производных бензотиадиазина (дихлотиазид), антраниловой кислоты (фуросемид) и др.

Потеря организмом натрия приводит к выводу из клеток ионов К+, нарушению деятельности сердца, скелетных и неисчерченных мышц. Развивается мышечная адинамия и потеря аппетита. Дефицит натрия через натриевые рецепторы, локализующиеся в гипоталамусе и почках, стимулирует биосинтез и секрецию альдостерона, задерживающего натрий в организме.

Положительный баланс натрия развивается в случае избыточного потребления соли, нарушения выведения натрия почками (гломерулонефрит, длительный прием гликокортикоидов), а также при избыточной продукции альдостерона, усиливающего реабсорбцию натрия в канальцах нефронов, пищевом канале, слюнных и потовых железах. Молекулярный механизм действия альдостерона связывают с генетической индукцией синтеза ферментов, участвующих в трансмембранном переносе Na+-и К+.

Избыток солей натрия в организме способствует развитию воспалительных процессов, задержке воды, а также развитию гипертензии.

Содержание калия во внеклеточной среде составляет 4 — 5 ммоль/л, во внутриклеточной — 110 — 150 ммоль/л. Суммарное содержание калия в организме составляет 4000 — 6000 ммоль (156 — 235 г). Две третьих этого количества Приходится на мышцы и свыше 5% — на скелет.

Суточный баланс калия составляет примерно 110 ммоль (около 4 г). Нарушение Итого баланса тесно связано с нарушением обмена натрия. Так, избыток калия усиливает выведение натрия и воды из организма, а его недостаток вызывает Нарушения, сходные с эффектом избытка натрия.

Отрицательный баланс калия может развиться при недостаточном поступлении его с пищей (овощи и молочные продукты), в случае потери его с рвотными массами или при поносе (концентрация калия в пищеварительных секретах примерно вдвое выше, чем в плазме крови), при длительном лечебном применении кортикотропина и гликокортикоидов, а также при гиперальдостеронизме.

Отрицательный баланс калия приводит к гипокалиемии, которая сопровождается алкалозом, т. е. при дефиците К+ повышается выведение почками Н+. Гипокалиемия может долго компенсироваться за счет перехода калия в кровь из клеток. Длительная гипокалиемия вызывает снижение содержания калия в клетках, мышечную слабость, понижение моторики желудка и кишок, снижение сосудистого тонуса, тахикардию. Изменение ЭКГ при гипокалиемии проявляется удлинением интервала Q—T и в снижении вольтажа зубца Т.

Задержка калия в организме может наблюдаться при избытке его в пище, а также при нарушении выделения К+ почками. В эксперименте выраженную задержку калия можно наблюдать у адреналэктомированных животных, в клинике — при гипофункции коры надпочечных желез (аддисонова болезнь) и при ацидозе.

Задержка калия в организме может вести к гиперкалиемии, которая сопровождается брадикардией и мышечными парезами. На ЭКГ характерны высокий зубец Т и уменьшение P. Возможна остановка сердца в диастоле. Гиперкалиемия наблюдается также при выходе калия из клеток (тканевый распад, инсулярная недостаточность и др.).

Магний является вторым по концентрации катионом внутриклеточной среды (13 ммоль/л). Он необходим для действия некоторых ферментов, катализирующих распад углеводов, а также для действия фосфатаз и фосфофераз. В организме человека содержится около 1000 ммоль (24 г) магния, половина которого находится в скелете. Концентрация магния в плазме крови составляет 1 ммоль/л.

Гипермагниемия возможна при потреблении пищи, богатой магнием (зеленые части растений, фасоль, горох, пшено и др.), при явлениях ацидоза и нарушении выделения магния почками (уремия). При этом развивается депрессия и сон (магнезиальный наркоз).

Гипомагниемия иногда наблюдается при панкреатите, вследствие нарушения всасывания магния (образование нерастворимых солей с жирными кислотами). Клинически, как и гипокальциемия, она проявляется тетанией.

Нарушение содержания хлоридов и гидрокарбонатов. Хлориды. Общее содержание хлора в организме составляет около 2400 ммоль (85 г). Хлор является главным анионом внеклеточной жидкости, где его концентрация составляет примерно 100 ммоль/л. Нарушение обмена хлоридов обычно развивается параллельно с нарушением баланса натрия и воды.

3----- Нарушение диффузии газов

Диффузия газов (кислорода и углекислого газа) происходит в альвеолах между воздухом альвеол и кровью. В норме из альвеолярного воздуха в кровь поступает кислород, а из крови в альвеолы - углекислый газ.

02

АЛЬВЕОЛЫ КРОВЬ

СО2

 

Нарушение диффузии газов приводит к развитию дыхательной недостаточности и гипоксемии, так как в основном нарушается диффузия кислорода.

Диффузионная недостаточность встречается при респираторном дистресс-синдроме взрослых, который характеризуется отеком мембран альвеол, спадением альвеол при патологии сурфактантной системы (феномен влажных легких). Респираторный дистресс-синдром новорожденных наблюдается у недоношенных детей. Его развитие связано с ишемией легочной ткани и нарушением образования сурфактанта. Диффузионная недостаточность развивается также при утолщении альвеолярной мембраны (болезнь гиалиновых мембран), пневмосклерозе, воспалении легких, отеке.

Диффузионную способность легких (ДСЛ) можно оценить количественно. Этот показатель отражает то количество кислорода, которое способно пройти через альвеоло-капиллярную мембрану за 1 мин при разности рО по обе стороны мембраны, равной 1 мм рт.ст.. В норме ДСЛ для кислорода составляет:

Количество поглощенного О2 за 1 мин 250 мл/м ДСЛ = ---------------------------------------------------------- = ---------------- = 25 мл/мин х мм рт.ст.

рО2 в альвеолах - рО2 в легочных 10

капиллярах

 

Чем больше сопротивление диффузии кислорода, тем меньше ДСЛ.

Билет

1------- 1. Причиной наследственных заболеваний является мутация. В настоящее время внешняя среда сверхнасыщена мутагенными факторами. Поэтому основой профилактики является борьба с мутагенными факторами (охрана АЭС, источников радиации, проверка новых медицинских препаратов на мутагенность).

2. В предупреждении наследственных заболеваний имеют значение социальные факторы (запрещение кровно-родственных браков, прекращение изолятов, борьба с религиозными предрассудками).

3. Определённую роль играет в предупреждении наследственных заболеваний возраст родителей. Чем старше мать (за 35 лет), тем вероятность спонтанной мутации выше.

4. Предупреждение родителей о возможном рождении у них больного потомства. Это даёт возможность родителям решить вопрос о деторождении

Генотерапия — исправление отдельных признаков наследственных заболеваний с помощью генов и генной инженерии, под которой понимают целенаправленное конструирование новых, не существующих в природе сочетаний генов и внедрении полученных гибридных молекул в другой организм. Перенос гибридных генов в новый организм возможен с помощью вирусов, после обработки генов препаратом ДНК, с помощью микроинъекций.

В настоящее время удалось больному с галактоземией (дефицит фосфатуридилтрансферазы) в клетки кожи трансплантировать ген, способный вырабатывать этот фермент. Дефицит исчезает. Это классический пример генной инженерии. В перспективе с помощью генной инженерии возможно создавать людей по генетическим инструкциям, увеличить эффективность работы человеческого мозга, улучшить здоровье и продлить жизнь человека.

3 группы заболеваний:

1. Наследственные болезни, не зависящие от влияния среды (болезнь Дауна, гемофилия, ахондродисплазия, фенилкетонурия).

2. Наследственные заболевания, проявляющиеся при действии факторов внешней среды (подагра, диабет, гипертония, атеросклероз) — наследственная предрасположенность.

3. Ненаследственные болезни. Наследственность не играет этиологической роли (травмы, инфекционные заболевания, ожоги). Генетические факторы могут играть роль в саногенезе.

Мутации:

1. Геномные (изменение числа хромосом) и хромосомные (изменение структуры хромосом) — хромосомные заболевания.

2. Генные мутации — молекулярные изменения на уровне ДНК.

Ген-белок взаимодействие: 1) образование избыточного количества белка (образование избыточного количества глобина, гемоглобина) — увеличивается свёртываемость крови; при избытке железа развивается гемосидероз внутренних органов; 2) образование аномального белка (серповидноклеточная анемия).

Ген-фермент взаимодействие: фенилкетонурия. Болезни накопления — гликогенозы.

Ген-рецептор взаимодействие: нарушение синтеза рецепторов андрогенов приводит при хромосомном наборе XY к развитию женского фенотипа. Витамин-D-резистентный рахит — дефект рецепторов 1, 25-дигидрооксикальциферола. Мутации в гене рецептора ЛПНП — нарушение холестеринового обмена.

2-------- Гиповитаминозы – нарушения, возникающие при частичной недостаточности витаминов. Авитаминоз – это патологический процесс, развивающийся вследствие длительного качественно неполноценного питания, при котором отсутствует тот или иной витамин либо необходимый комплекс витаминов. Основными механизмами развития гипо– и авитаминозов являются следующие:

недостаточное поступление витаминов с пищей;

угнетение микрофлоры кишечника, продуцирующей ряд витаминов;

нарушение всасывания и утилизации витаминов в организме;

повышение потребности организма в витаминах, например, при интенсивном росте, беременности, лактации и т. п.;

врожденные энзимопатии.

Гипервитаминозы – состояния организма, возникающие в результате пищевой или фармакологической передозировки разных витаминов. Приводим причины, механизмы и проявления ряда важнейших гипо-, авитаминозов и гипервитаминозов.

Гиповитаминоз А. Физиологические функции витамина А связаны с процессами фоторецепции, роста, регенерации и дифференцировки эпителия и соединительной ткани, иммунологически – с гомеостазом. Гиповитаминоз А проявляется в виде трех основных патологических процессов:

1) гемералопии (куриная слепота) – резкого ухудшения зрения при недостаточном освещении, в сумерках вследствие дефицита фоточувствительного протеида родопсина, содержащего витамин А;

2) ксерофтальмии, связанной с гиперкератозом и закупоркой эпителием слезных протоков, высыханием конъюнктивы и роговой оболочки глаза;

3) усилением кератинизации, обусловленным уменьшением интенсивности восстановления эпителия и слизистых оболочек, увеличением ороговения, дистрофией и слущиванием эпителия. В секреторных железах (слюнных, поджелудочной) интенсивно идет процесс гиалинизации, возникает недостаточность их функции.

Гипервитаминоз А связан с интенсификацией обмена и развитием дистрофических процессов в печени, почках, сердце, костях. Наблюдается при передозировке витамина А или избыточном потреблении содержащих его продуктов.

Авитаминоз D. Дефицит кальциферола в организме приводит к развитию рахита. Обмен витамина D достаточно сложен, в его синтезе и трансформации принимают участие ткани кожи, печени, почек. При недостаточности витамина в пище, дефиците инсоляции или развитии патологии указанных органов возникают изменения психики ребенка (вялость, плаксивость, нарушения сна), наблюдаются потливость, задержка роста, искривления костей и задержка сроков окостенения. У взрослых возможно размягчение костной ткани (остеомаляция).

Гипервитаминоз D. При передозировке витамина D прекращается рост, утолщаются кости, рано зарастает родничок, возникает микроцефалия. Кроме того, фосфат кальция откладывается в тканях разных органов: в стенках сосудов, почках, миокарде. Кальцинаты становятся местом развития склероза. Нередко присоединяется мочекаменная и желчекаменная болезнь.

3----- Нарушение кровотока (перфузии) в малом круге

Довольно часто нарушения кровообращения в малом круге проявляются в виде повышения давления в легочной артерии - легочной гипертензии. В норме давление в легочной артерии равно 13-15 мм рт.ст. Если давление повышается в 2 раза, то это свидетельствует о гипертензии. В основе развития легочной гипертензии лежат органические и функциональные факторы.

Легочная гипертензия может быть первичной и вторичной, прекапиллярной и посткапиллярной.

Первичная прекапиллярная гипертензия возникает при воспалении сосудистой стенки, микротромбозе, эмболии, повышении вязкости крови, врожденных структурных изменениях сосудов. Вторичная гипертензия может быть прекапиллярной и посткапиллярной. Вторичная прекапиллярная гипертензия возникает при гипоксемии и гиперкапнии, гиперсекреции норадреналина, воздействии ангиотензина-2, серотонина. При этом происходит спазм легочных сосудов и кровоток уменьшается. Развитие дыхательной недостаточности и гипоксии в этом случае обусловлено нарушением поступления крови в капилляры и открытия артерио-венозных шунтов. По норме по шунтам проходит около 7% крови. При спазме легочной артерии и капилляров открываются артерио-венозные шунты и кровь, обходя обменные капилляры, не насыщается кислородом, нарушается выведение углекислого газа и, как следствие, развивается гипоксемия и гиперкапния, которые усугубляют спазм артериол и усиливают явления легочной гипертензии.

Вторичная посткапиллярная легочная гипертензия развивается при клапанных пороках левого сердца, при митральном стенозе, хронических заболеваниях сердечно-сосудистой системы (гипертоническая болезнь, хроническое легочное сердце), сердечно-сосудистой недостаточности левожелудочкового типа, сдавлении легочных вен опухолью, тромбозе вен. В результате этих процессов возникает застой крови в легочных венах. Кровь не поступает в сосуды большого круга кровообращения, развивается гипоксемия, а затем и гипоксия.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.01 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал