![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Работа 2. Оптимизация реактора идеального смешения методами нелинейного программирования
Цель работы: ознакомиться с методами нелинейного программирования. Научиться применять методы нелинейного программирования для решения задач оптимизации химико-технологических процессов. Задание: решить задачу оптимизации реактора идеального смешения различными методами нелинейного программирования. Задача решается с помощью ЭВМ. При разработке программы использовать языки программирования Бэйсик, Паскаль по выбору студента. Для решения задачи использовать 4 метода: 1) метод наискорейшего спуска; 2) метод сканирования; 3) метод случайных направлений с обратным шагом; 4) метод “шагов по оврагу”. Математическая формулировка задачи оптимизации часто может быть представлена как задача отыскания наибольшего или наименьшего значения функции нескольких переменных
где функция На независимые переменные
или неравенств:
или же тех и других одновременно. Для случая, когда аналитический вид соотношений (2.1) и (2.2) известен и не слишком сложен и если, в особенности, число независимых переменных n невелико, всегда можно с бо́ льшим или меньшим успехом использовать для решения оптимальной задачи аналитические методы, по крайней мере для того, чтобы свести ее решение к решению системы конечных уравнений. Особые трудности возникают тогда, когда соотношение (2.1), определяющее значение критерия оптимальности для заданной совокупности значений независимых переменных Задачи такого типа, т.е. с нелинейными и трудновычислимыми соотношениями, определяющими критерий оптимальности (2.1) и ограничения (2.2), являются предметом рассмотрения специального раздела математики – нелинейного программирования [1, 2, 5]. Как правило, решение задач нелинейного программирования могут быть найдены только численными методами, поэтому возникает необходимость применения вычислительной техники. В большинстве своем методы нелинейного программирования могут быть охарактеризованы как многошаговые методы или методы последовательного улучшения начального решения. Большинство методов нелинейного программирования используют идею движения в n-мерном пространстве в направлении оптимума. При этом из некоторого исходного или промежуточного состояния
Очевидно, что для случая поиска минимума целевой функции
иначе перевод в состояние Значительное число методов нелинейного программирования в соответствии со способом определения шага
|