Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Понятие о виде. Реальность вида. Структура вида. Критерии вида.
3. Пути преодоления тканевой несовместимости. Искусственные органы. Клонирование организмов: за и против. Ответ 1. При половом размножении в процессе оплодотворения объединяются геномы (Геномом называют всю совокупность наследственного материала, заключенного в гаплоидном наборе хромосом клеток данного да организмов) двух родительских половых клеток, образуя генотип нового организма. Все соматические клетки такого организма обладают двойным набором генов, полученных от обоих родителей. Таким образом, генотип — это генетическая конституция организма, представляющая собой совокупность всех наследственных задатков его клеток, заключенных в их хромосомном наборе — кариотипе (Кариотип —диплоидный набор хромосом, свойственный соматическим клеткам организмов данного вида, являющийся видоспецифическим признаком и характеризующийся определенным числом и строением хромосом). Наследственность — это свойство живых организмов передавать свои признаки потомкам в поколениях. Этим обеспечивается преемственность и связь в популяциях между разными поколениями. Наследственность является одним из главных факторов эволюции. Материалом, обеспечивающим наследственность организмов, является ДНК, образующая конкретный генотип организма и генофонд популяции и вида в целом. В процессе эволюции наследуются в целом генотипы, являющиеся носителями этих и других признаков. Основными носителями генов в клетке и организме эукариот являются хромосомы, состоящие из ДНК и белков. Хромосомы находятся в ядре, имеющем гаплоидный или диплоидный (реже полиплоидный) набор хромосом. Некоторые признаки могут наследоваться без участия ядерного аппарата. Это касается так называемой цитоплазматической наследственности. Некоторые клеточные структуры (митохондрии, пластиды) имеют свою автономную кольцеобразную ДНК и способны делиться сравнительно автономно от клетки. Поэтому некоторые признаки, связанные с этими структурами (окраска плодов, цветков и листьев, высокая активность клеточного дыхания и ряд др.) могут передаваться дочерним поколениям, но только по материнской линии или при вегетативном размножении (так как спермин не несут пластид и последние передаются с клетками материнского организма). Совокупность генов, расположенных в цитоплазматических молекулах ДНК, называют плазмоном. Он определяет цитоплазматическую наследственность. Ответ 2. В современной биологии видом называют совокупность популяций особей, обладающих наследственным сходством морфологических, физиологических и биохимических признаков, свободно скрещивающихся и дающих плодовитое потомство, приспособленных к определенным условиям жизни и занимающих определенную территорию — ареал. Вид — это основная структурная и таксономическая единица в системе живой природы и качественный этап эволюции организмов. В настоящее время вид рассматривается как реально существующая в природе группа особей. Остальные систематические категории являются в известной мер производными вида, выделяемыми учеными на основании те или иных признаков (роды, семейства и т.п.). Виды объединяются в таксономические категории более высокого ранга. Так, виды объединяются в роды, роды — в семейства, семейства — в отряды, отряды — в классы, классы — в типы. Критерии вида — совокупность определенных признаков, свойственных только одному какому-либо виду.
Ответ 3. ТКАНЕВАЯ НЕСОВМЕСТИМОСТЬ, явление, обусловленное генетическим своеобразием (уникальностью) каждой особи и заключающееся в отторжении органа или ткани, пересаженных от одного организма другому. Определяется различием в антигеном составе клеток донора и реципиента. Преодоление тканевой несовместимости лежит в основе успешной пересадки органов и тканей. ТРАНСПЛАНТАЦИЯ (на средневековой латыни transplantatio - пересаживание), пересадка органов и тканей человека и животных. Как хирургический метод известна с глубокой древности. Используется трансплантация кожи, мышц, нервов, роговицы глаза, жировой и костной ткани, костного мозга, сердца, почек и др. Особый вид трансплантации - переливание крови. При экспериментах на животных и в клинической медицине применяют ауто - (трансплантация собственных тканей), гомо-(трансплантация от донора того же вида) и гетеротрансплантацию (трансплантация от донора другого вида, например собаке от кролика). Проблемы трансплантации изучает трансплантология. Пересадка тканей. Еще один важный иммунологический феномен, связанный с изоантителами, наблюдается при трансплантации тканей. Гомотрансплантаты, т.е. ткани одного и того же организма или однояйцовых близнецов (например, при пересадке кожи или пластических операциях), обычно хорошо приживляются на новом месте. Иммунологическая реакция не развивается, так как гены и кодируемые ими белки в пересаженной ткани и клетках реципиента абсолютно одинаковы. Если же ткань взята от донора, не связанного с реципиентом близким родством, она может сохраняться на месте пересадки некоторое время, но затем отторгается. Следующий трансплантат от нового донора отторгается еще быстрее. Такое отторжение имеет иммунологическую природу – об этом свидетельствует успех трансплантации в случае сходной антигенной специфичности тканей донора и реципиента. Подбор донора по тканевой совместимости с реципиентом имеет жизненно важное значение при пересадках сердца, почек и других органов. Гены, ответственные за приживляемость или отторжение пересаженной ткани, образуют т.н. «главный комплекс гистосовместимости». Они кодируют синтез не только тканевых антигенов, определяющих успех или неуспех трансплантации, но и некоторых рецепторов на поверхности T-клеток. Определение продуктов этих генов помогает заранее определить, будет ли организм реагировать на специфические антигены пересаженной ткани. Клонирование – получение потомков одной клетки; дает возможность проводить в генетически идентичных клетках биохимический анализ наследственно обусловленных процессов.
|