Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Гиперполяризационное торможение
Его суть заключается в том, что увеличивается потенциал мембраны по отношению к покою, в связи с чем снижается способность клетки реагировать на раздражители. Возникшее явление характеризуется понижением возбудимости (рис. 4.3). Одним из проявлений этого вида является положительный следовой потенциал, который возникает после потенциала действия и связан с тем, что еще часть ионов К+ не возвращена в клетку (на наружной поверхности мембраны остается достаточно большое количество ионов К+). В этом состоянии наблюдается явление относительной рефрактерности, т.е уменьшение ответа клетки на раздражитель. Необходим более сильный стимул, чтобы клетку возбудить. Из состояния гиперполяризации труднее достичь критического уровня деполяризации, чем из состояния покоя (рис. 4.3). Такое торможение чаще всего развивается в связи с большим выходом К+ наружу и большим поступлением Cl- в клетку. Изменение проницаемости мембран для К+ и Cl-, которое приводит к гиперполяризации мембраны, происходит под влиянием гамма - аминомасляной кислоты (ГАМК), вещества которое вырабатывают специальные нервные клетки (клетки Реншоу); серотонина и некоторых других веществ. Эти вещества увеличивают проницаемость мембраны для К+ и Cl- и приводят к гиперполяризации мембраны (более -100 мв) - формируется тормозной потенциал. Клетка переходит в состояние пониженной возбудимости.
Рис. 4.3. Схема возникновения гиперполяризационного иорможения.
Работа нервной системы чаще всего связана с этим видом торможения. В зависимости от места возникновения торможения различают: пресинаптическое (А) и постсинаптическое (Б); центральное и периферическое (рис. 4.4).
Рис. 4.4. Пресинаптическое (А) и постсинаптическое (Б) торможение
При пресинаптическом торможении чаще всего возникает деполяризация пресинаптической мембраны, в результате чего уменьшается выделение медиатора и передача импульса в синапсе. Постсинаптическое торможение развивается обычно по механизму гиперполяризационного и связано с возникновением тормозного постсинаптического потенциала (ТПСП) под влиянием нейромедиаторов (ГАМК, серотонина).
Центральное торможение имеет место в ЦНС, и впервые было описано И.М. Сеченовым в 1840 г. Накладывая кристаллик NaCl на зрительные бугры (таламус) мозга лягушки, он обнаружил увеличение времени двигательной рефлекторной реакции на раздражитель. Это послужило основанием для заключения, что в ЦНС имеются специфические тормозные центры, возбуждение которых кристалликом соли вызывает торможение в центрах спинномозговых рефлексов (рис. 4.5). Позднее было доказано, что одни и те же центры могут находиться в состоянии возбуждения и в состоянии торможения; а специфическими тормозными центрами могут являться клетки Реншоу, выделяющие тормозной медиатор - ГАМК.
Рис. 4.5. Схема опыта " Сеченовское торможение" Периферическое торможение было описано братьями Вебер на примере торможения деятельности сердца при раздражении блуждающего нерва. Периферическое торможение развивается вне ЦНС, в органах, и по механизму может быть как гиперполяризационное, так и деполяризационное. Совокупность возбудительных и тормозных процессов в ЦНС и на периферии определяет специфическую биологически целесообразную деятельность нервной системы и различных органов.
Рецепторный потенциал Возбуждение и торможение, которое возникает в нервной системе, создает все многообразие ответных реакций, обеспечивая процессы регуляции в организме. Существует специальная нервная структура, функция которой заключается в том, что она воспринимает различные раздражители и обеспечивает трансформацию любого вида энергии в нервный импульс. Эта структура называется рецептор. В рецепторе можно выделить две части: воспринимающую и трансформирующую. Воспринимающая устроена таким образом, что стимул, действуя на нее, формирует в этих структурах генераторный (рецепторный потенциал). Это происходит вследствие растяжения мембраны клеток (проприорецепторы мышечной ткани), при действии механической волны (звуковые рецепторы), при изменении напряжения, давления (барорецепторы), при изменении электрохимического градиента (при действии химических веществ - хеморецепторы).
Если сила раздражителя и время действия увеличиваются, потенциал в этой части рецептора также увеличивается и удлиняется (рис. 4.6).
Рис. 4.6. Изменение рецепторного потенциала в зависимости от стимула.
При длительном действии раздражителя возникает явление привыкания (адаптации) рецептора, т.е уменьшается амплитуда потенциала.
Чем дольше действие раздражителя, тем быстрее наступает привыкание, чем сильнее раздражитель, тем хуже идет адаптация. Этот потенциал запускает во второй части рецептора формирование потенциала действия (ПД). Потенциал действия по уровню деполяризации везде одинаков. Он отличается по количеству импульсов, длительности интервалов между импульсами. Это явление называется трансформация рецепторного потенциала в потенциал действия. Рецепторный потенциал, как и местный, не распространяется (имеет локальный характер). Потенциал действия отвечает по принципу " все или ничего", обладает способностью к распространению. На выходе из рецепторов регистрируется ПД, который легко распространяется по нерву. В рецепторе создается частотный (сенсорный) код, который характеризует данный раздражитель. В зависимости от частоты и силы раздражителя, он будет отличаться количеством, частотой и длительностью импульсов, но не будет отличаться амплитудой (она одинакова). Любой по количеству стимул, действуя на соответствующий рецептор, трансформируется в ПД. Благодаря этому в НС по волокнам распространяются биопотенциалы с разной частотой и длительностью.
|