Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Дыхание. Дыхание, совокупность процессов, которые обеспечивают поступление в организм кислорода и выделение из него углекислого газа (внешнее Д.) и использование
Дыхание, совокупность процессов, которые обеспечивают поступление в организм кислорода и выделение из него углекислого газа (внешнее Д.) и использование кислорода клетками и тканями для окисления органических веществ с освобождением содержащейся в них энергии, необходимой для жизнедеятельности (тканевое дыхание, клеточное Д.). Бескислородный путь освобождения энергии свойствен только небольшой группе организмов — так называемыманаэробам (см. Брожение); в ходе эволюции освобождение энергии в результате Д. стало у подавляющего большинства организмов главным процессом, а анаэробные реакции сохранились в основном как промежуточные этапы обмена веществ. Аэробы Аэробы, аэробные организмы (от аэро... и греч. bios — жизнь), организмы, обладающие аэробным типом дыхания, т. е. способные жить и развиваться только при наличии свободного кислорода. К А. относятся почти все животные и растения, а также многие микроорганизмы, которые используют для жизнедеятельности энергию, освобождающуюся при реакциях окисления, протекающих с поглощением свободного кислорода (т. е. обладающие окислительным типом метаболизма). Облигатные (безусловные) А., аэрофилы (от греч. phileo — люблю), получают энергию только от реакции окисления (например, уксуснокислые и нитрифицирующие бактерии). Факультативные А. (условные А.; они же условные анаэробы)используют энергию брожения, а потому могут жить и при больших, и при ничтожных количествах кислорода (например, дрожжи, денитрифицирующие бактерии). Каждому виду бактерий А. свойственны определённые, характерные для него максимальная, минимальная и оптимальная концентрации кислорода. Лит.: Работнова И. Л., Общая микробиология, М., 1966; Фробишер М., Основы микробиологии, пер. с англ., М., 1965; Stanier R., Doudoroff М., Adelberg Е., General microbiology, 2 ed., L., 1963.
Сжиганием топлива на В. человечество издавна получает необходимое для жизни и производственной деятельности тепло (см.Горение). В. — один из важнейших источников химического сырья. Сухой В. состоит из следующих газов (% по объёму): азота N2 78, 09; кислорода O2 20, 95; аргона Ar 0, 93; углекислого газа CO2 0, 03. В. содержит очень небольшие количества остальных инертных газов, а также водорода H2, озона О3, окислов азота, окиси углерода СО, аммиака NH3, метана CH4, сернистого газа SO2 и др. (подробнее о составе сухого В. см. таблицу в ст. Атмосфера). Учитывая молекулярную массу каждого компонента и его долю в составе В., можно рассчитать среднюю молекулярную массу В., равную 28, 966 (приблизительно 29). Содержание в В. азота, кислорода и инертных газов практически постоянно, причём постоянная концентрация O2 (и отчасти N2) поддерживается растительным миром Земли (см. Фотосинтез, Азотфиксация). Содержание в В. углекислого газа, окислов азота, сернистых соединений существенно колеблется (в частности, возрастает вблизи больших городов и промышленных предприятий; см. также Воздушный бассейн). Содержание воды в В. непостоянно и может составлять от 0, 00002 до 3% по объёму (см. Влажность воздуха). В В. всегда находится большое число мелких твёрдых частичек — пылинок (от нескольких млн. в 1 м3 чистого комнатного В. до 100—300 млн. в 1 м3 В. больших городов, см. Аэрозоли). Такие частички зачастую служат центрами конденсации атмосферной влаги и являются причиной образования туманов. В. проникает в почву, составляя от 10 до 23—28% её объёма. Почвенный В., благодаря биологическим процессам в почве, существенно отличается от обычного по составу; он содержит (по объёму): 78—80% O2, 0, 1—20, 0% N2 и 0, 1—15, 0% CO2. Историческая справка. Учёные древности считали В. одним из элементов, из которых состоит всё существующее. Анаксимен из Милета (6 в. до н. э.) называл В. " первоматерией", а Эмпедокл (5 в. до н. э.) и Аристотель (4 в. до н. э.) — одним из четырёх элементов — стихий (наряду с огнём, водой и землёй), в которых заключены все присущие материи свойства. Представление о В. как о самостоятельном индивидуальном веществе господствовало в науке до конца 18 в. В 1775—77 французский химик А. Лавуазье показал, что в состав В. входят открытые незадолго до того химические элементы азот и кислород. В 1894 английские учёные Дж. Рэлей и У. Рамзай обнаружили в В. ещё один элемент — аргон, затем в В. были открыты и другие инертные газы. Большую роль в истории науки сыграло изучение физических свойств В. Итальянский учёный Г. Галилей (1632) нашёл, что В. в 400 раз легче воды. Итальянские учёные В. Вивиани и Э. Торричелли (1643) открыли существование атмосферного давления и изобрели для его измерения барометр. Французский учёный Б. Паскаль обнаружил уменьшение атмосферного давления с высотой. Изучая соотношение между давлением и объёмом В., Р. Бойль и Р. Тоунлей (1662) в Англии и Э. Мариотт (1676) во Франции открыли закон, названный их именами (см. Бойля — Мариотта закон); в дальнейшем, с развитием науки были установлены и другие газовые законы (см. Газы). Долгое время В. и его главные компоненты не удавалось превратить в жидкость, и потому их считали " постоянными" газами. Неудача попыток сжижения В. была объяснена лишь после того, как Д. И. Менделеев (1860) установил понятие критической температуры и давления. В 1877, используя охлаждение В. до температуры ниже критической (около —140°С) под высоким давлением, Л. П. Кальете (Париж) и Р. Пикте (Женева) удалось превратить В. в жидкость. В 1895 немецкий инженер К. Линде сконструировал и построил первую промышленную установку для сжижения В. (см. Сжижение газов). Физические свойства. Давление В. при 0°С на уровне моря 101325 н/м2 (1, 01325 б, 1 aт, 760 мм рт. cт.); в этих условиях масса 1 л В. равна 1, 2928 г. Для большинства практических целей В. можно рассматривать как идеальный газ; в частности, парциальное давление каждого газа, входящего в состав В., не зависит от присутствия других компонентов В. (см. Дальтона законы). Критическая температура —140, 7°С, критическое давление 3, 7 Мн/м2 (37, 2 am). Перечисленные ниже свойства В. даны при давлении 101325 н/м2 или 1, 01325 б (так называемое нормальное давление). Удельная теплоёмкость при постоянном давлении Cp 10, 045·103дж/(кг·К), т. e. 0, 24 кал/(г·°С) в интервале 0—100°С, а при постоянном объёме Cv8, 3710·103 дж/(кг·К), т. е. 0, 2002 кал/(г·°С) в интервале 0—1500°С. Коэффициент теплопроводности 0, 024276 вт/(м·К), то есть 0, 000058 кал/(см·сек·°С) при 0°С и 0, 030136вт/(м·К), т. е. 0, 000072 кал/(см·сек·°С) при температуре 100°С; коэффициент теплового расширения 0, 003670 (0—100°С). Вязкость 0, 000171 (0°С) и 0, 000181 (20°С) мн·сек/м2(спз). Степень сжимаемости z = pV/p0V0 1, 00060 (0°С), 1, 09218 (25°С), 1, 18376 (50°C); показатель преломления 1, 00029; диэлектрическая проницаемость 1, 000059 (0°С). Растворимость в воде (в см3 на 1 л воды) 29, 18 (0°С) и 18, 68 (20°С). Поскольку растворимость кислорода в воде несколько выше, чем азота, соотношение этих газов при растворении в воде изменяется и составляет соответственно 35% и 65%. Скорость звука в В. при 0°С около 330 м/сек. Жидкий В. — голубоватая жидкость с плотностью 0, 96 г/см3 (при—192°С и нормальном давлении). Свободно испаряющийся при нормальном давлении жидкий В. имеет температуру около —190°С. Состав его непостоянен, так как азот (и аргон) улетучивается быстрее кислорода. Фракционное испарение жидкого В. используют для получения чистого азота и кислорода, аргона и других инертных газов. Жидкий В. хранят и транспортируют в дьюара сосудах или в резервуарах специальной конструкции — танках. Сжатый В. хранят в стальных баллонах при 15 Мн/м2 (150 am); окраска баллонов чёрная с белой надписью " Воздух сжатый". В. Л. Василевский. Физиолого-гигиеническое значение В. Колебания содержания азота и кислорода в атмосфере В. незначительны и не оказывают существенного влияния на организм человека. Для нормальной жизнедеятельности человека важен процентный состав В., в частности парциальное давление кислорода. Парциальное давление кислорода В. над уровнем моря составляет 21331, 5 н/м2 (160мм рт. ст.), при уменьшении его до 18665, 1 н/м2 (140 мм рт. ст.) появляются первые признаки кислородной недостаточности, которые легко компенсируются у здоровых людей учащением и углублением дыхания, ускорением кроветока, увеличением количества эритроцитов и т.д. При уменьшении парциального давления до 14 665, 4 н/м2 (110 мм рт. ст.) компенсация становится недостаточной и появляются признаки гипоксии, а уменьшение его до 6 666, 1—7 999, 3 н/м2 (50—60 мм рт. cт.) опасно для жизни. Повышение парциального давления кислорода вплоть до дыхания чистым кислородом (парциальное давление 101325 кн/м2 — 760мм рт. cт.) переносится здоровыми людьми без отрицательных последствий. При обычном парциальном давлении азот инертен. Увеличение его парциального давления до 0, 8—1, 2 Мн/м2 (8—12 aт) приводит к проявлению наркотического действия (см. Наркоз). Значительное увеличение процентного содержания азота в В. (до 93% и более) вследствие уменьшения парциального давления кислорода может привести к аноксемии и даже смерти. Содержание углекислого газа — физиологического возбудителя дыхательного центра в атмосфере В., составляет обычно 0, 03— 0, 04% по объёму. Некоторое повышение его концентрации в В. промышленных центров несущественно для организма. При высоких концентрациях углекислого газа и снижении парциального давления кислорода может наступить асфиксия. При содержании в В. 14—15% CO2 может наступить смерть от паралича дыхательного центра. Увеличение концентрации CO2 в В. помещений происходит в основном за счёт дыхания и жизнедеятельности людей (взрослый человек в покое при 18—20°С выделяет около 20 л CO2 в час). Поэтому содержание в В. углекислого газа, с одной стороны, и органических соединений, микроорганизмов, пыли и т.п., с другой, увеличиваются одновременно; концентрация CO2 в В. помещений является санитарным показателем чистоты В. Содержание CO2 в В. жилых помещений не должно превышать 0, 1%. Находящиеся в незначительном количестве в атмосфере В. инертные газы — аргон, гелий, неон, криптон, ксенон при нормальном давлении индифферентны для организма. Обнаруживаемые в атмосфере В. в ничтожных концентрациях радиоактивные газы радон и его изотопы — актинон и торон, имеющие малый период полураспада, не оказывают неблагоприятного воздействия на человека. В атмосфере В. обычно обнаруживаются различные микроорганизмы (бактерии, грибки и др.). Однако патогенные микроорганизмы встречаются в В. крайне редко, в связи с чем передача инфекционных заболеваний через атмосферу В. может происходить в исключительных случаях, например при применении бактериологического оружия, в закрытых помещениях при наличии больных, выделяющих в В. патогенные микроорганизмы вместе с мельчайшими капельками слюны при кашле, чихании, разговоре. В зависимости от устойчивости микроорганизмов они могут передаваться через В. как воздушно-капельным, так и воздушно-пылевым путём (наиболее устойчивые, например, возбудители туберкулёза, дифтерии). Для жизнедеятельности человека большое значение имеют температура, влажность, движение В. Для обычно одетого человека, выполняющего лёгкую работу, оптимальная температура В. 18—20°С. Чем тяжелее работа, тем ниже должна быть температура В. Благодаря совершенным механизмам терморегуляции человек легко переносит изменения температуры и может приспособиться к различным климатическим условиям. Оптимальная для человека относительная влажность В. 40—60%. Сухой В. при всех условиях переносится хорошо. Повышенная влажность В. действует неблагоприятно: при высокой температуре она способствует перегреванию, а при низкой температуре переохлаждению организма. Движение В. вызывает увеличение теплоотдачи организма. Поэтому при высокой температуре (до 37°С) ветер способствует предохранению человека от перегревания, а при низкой — переохлаждению организма. Особенно неблагоприятна для человека комбинация ветра с низкой температурой и высокой влажностью. Известное значение придаётся ионизации В. Лёгкие ионы с отрицательным зарядом оказывают положительное воздействие на организм. Для ионизации В. предложен ряд приборов. Г. И. Сидоренко. Загрязнение В. Рост масштабов хозяйственной деятельности увеличивает загрязнение В. Развитие промышленности, энергетики, транспорта приводит к повышению содержания в В. углекислого газа (на 0, 2% от имеющегося в В. количества ежегодно) и ряда других вредных газов. Металлургические и химические предприятия и ТЭЦ загрязняют В. сернистым газом, окислами азота, сероводородом, галогенами и их соединениями. Другим серьёзным источником загрязнения В. служит автотранспорт. По некоторым подсчётам, 1 тыс. автомобилей в день выбрасывает с выхлопными газами в В. 3, 2 т окиси углерода, от 200 до 400 кг других продуктов неполного сгорания топлива, 50—150 кг соединений азота. Очень велико загрязнение В. твёрдыми частицами. В Питсбурге (США) на 1 кв. миле (259 га) ежегодно осаждается 610 т пыли. Промышленные предприятия, ТЭЦ, автотранспорт, лесные пожары, пыльные бури, возникающие в результате эрозии почв при неправильном землепользовании, повышают концентрацию твёрдых частиц (пыли и дыма) в В. настолько, что это существенно (на 20—40%) понижает солнечную радиацию, дошедшую до поверхности земли в районе больших городов. О масштабах таких процессов можно судить хотя бы по тому, что пыльные бури 1930—34 в США унесли до 25 см почвенного слоя и перенесли около 200 млн. т пыли на расстояния до 1000 км. Загрязнение В. приводит к ухудшению условий жизни человека, животных и растений. Вредное действие на живые организмы при этом вызывается не только первичными компонентами промышленных выбросов, но и образующимися из них новыми токсическими веществами, так называемыми фотооксидантами. Загрязнение В. иногда может достигать таких масштабов, что приводит к увеличению заболеваемости и смертности населения. Особую опасность представляют радиоактивные загрязнения В.; вследствие постоянных движений воздушных масс они носят глобальный характер (см. Радиоактивное загрязнение).Некоторые загрязнения В. вызывают профессиональные заболевания. Влияние загрязнений В. на условия жизни весьма велико. В СССР приняты законы об охране природы, предусматривающие необходимость санитарного контроля за состоянием В. и ответственность руководителей промышленных предприятий за тщательную очистку и обезвреживание промышленных газов до их выброса в атмосферу (см. Газов очистка).В качестве обязательных мероприятий при планировке и застройке городов и посёлков и размещении промышленных объектов предусматривается создание санитарно-защитных зон (разрывов), вынос вредных в санитарном отношении промышленных предприятий за пределы жилых районов и т.д. (см. Благоустройство населённых мест, Реконструкция города). См. также Воздушный бассейн. Анализ В. Предельно допустимые концентрации (обычно в мг на 1 л или на 1 м3 В.) вредных и взрывоопасных веществ в производственной воздушной среде регламентируются законодательно. Методы анализа В. зависят от агрегатного состояния определяемого вещества. Например, пыль и аэрозоли обычно улавливают ватными или бумажными фильтрами; иногда для улавливания аэрозолей применяют стеклянные фильтры; туманы и газы поглощают главным образом жидкостями. Наиболее распространённые методы определения содержания вредных веществ в В. — фотометрический анализ, нефелометрия итурбидиметрия. Для быстрого определения малых концентраций токсичных и взрывоопасных веществ в В. наиболее часто используют автоматические газоанализаторы. Особое место в анализе В. занимает определение радиоактивных загрязнений (см.Дозиметрия). В. в технике. Благодаря содержащемуся в В. кислороду, он используется как химический агент в различных процессах. Сюда относятся: горение топлива, выплавка металлов из руд (доменный и мартеновский процессы), промышленное получение многих химических соединений (серной и азотной кислот, фталевого ангидрида, окиси этилена, уксусной кислоты, ацетона, фенола и др.); ценность В. как химического агента существенно повышают, увеличивая содержание в нём кислорода. В. является важнейшим промышленным сырьём для получения кислорода, азота, инертных газов. Физические свойства В. используют в тепло- и звукоизоляционных материалах, в электроизоляционных устройствах; упругие свойства В. — в пневматических шинах; сжатый В. служит рабочим телом для совершения механической работы (пневматические машины, струйные и распылительные аппараты, перфораторы и т.д.). Искусственный В. (точнее — искусственная атмосфера, смеси газов, пригодные для дыхания) впервые был использован в медицине при заболеваниях, сопровождающихся кислородной недостаточностью (40—60% кислорода в смеси с обычным В. или 95% кислорода и 5% CO2). Подобные искусственные газовые смеси применяются в высотной авиации, горноспасательном деле. Особое значение имеет искусственный В. в водолазном деле. Обычный В. непригоден для работы при давлениях, существенно превышающих нормальное: в этих условиях В. оказывает наркотическое действие, а повышение растворимости азота в крови и тканях тела делает опасным быстрый подъём водолаза на поверхность. Выделение пузырьков азота из крови может вызватькессонную болезнь и смерть. Поэтому в последние 10—15 лет испытываются для работ на больших глубинах (в условиях высоких давлений) безазотные газовые смеси, содержащие главным образом гелий (до 96, 4%) и кислород (4—2%) под давлением 0, 7—2 Мн/м2 (7—20 am). Такие смеси устраняют опасность кессонной болезни, однако создают определённый дискомфорт из-за высокой теплопроводности гелия; отмечено также существенное изменение тембра голоса в такой атмосфере. Проблема искусственного В. решается также при создании обитаемых космических кораблей (см. Атмосфера кабины). Советские космические корабли " Восток" и " Восход" были оборудованы специальной системой, поддерживающей состав В., близкий к обычному: парциальное давление кислорода 20—40 кн/м2, объёмная концентрация CO2 0, 5—1%. Американские космические корабли " Джемини" имели чисто кислородную атмосферу при давлении около 0, 3 aт. Лит.: Хргиан А. Х., Физика атмосферы, 2 изд., М., 1958; Некрасов Б. В., Основы общей химии, т. 1, М., 1965; Баттан Л. Дж., Загрязнённое небо, пер. с англ., М., 1967; Арманд Д., Нам и внукам, 2 изд., М., 1966; Соколов В. А., Газы земли, [М., 1966]; Определение вредных веществ в воздухе производственных помещений, 2 изд., М., 1954; Руководство по коммунальной гигиене, т. 1, М., 1961.
|