Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
статистических распределений ⇐ ПредыдущаяСтр 3 из 3
Для наглядности принято использовать следующие формы графического представления статистических распределений: полигоны и гистограммы. Дискретный ряд изображают в виде полигона. Полигон частот - ломаная линия, отрезки которой соединяют точки с координатами ( i, i); аналогично полигон относительных частот - ломаная, отрезки которой соединяют точки с координатами (, wi ). Интервальный ряд изображают в виде гистограммы. Гистограмма частот есть ступенчатая фигура, состоящая из прямоугольников, основания которых - интервалы длиной , а высоты - плотности частот . Для гистограммы относительных частот высоты прямоугольников - плотности относительных частот . Здесь в общем случае , однако на практике чаще всего полагают величину h одинаковой для всех интервалов. где i =1, 2,..., k. Площадь гистограммы есть сумма площадей ее прямоугольников.
таким образом, площадь гистограммы частот равна объему выборки, а площадь гистограммы относительных частот равна единице. В теории вероятностей гистограмме относительных частот соответствует график плотности распределения вероятности . Поэтому гистограмму можно использовать для подбора закона распределения генеральной совокупности. Кумулятивные ряды графически изображают в виде кумуляты. Для ее построения на оси абсцисс откладывают варианты признака или интервалы, а на оси ординат - накопленные частоты Н () или относительные накопленные частоты , а затем точки с координатами ( i; H ( i)) или ( i; ) соединяют отрезками прямой. В теории вероятностей кумуляте соответствует график интегральной функции распределения . Замечание 1. Если в статистическом исследовании исходным является статистическое распределение в виде интервального ряда (сгруппированные данные), а исходный вариационный ряд недоступен, то точное расположение отдельных вариант, попавших в каждый из интервалов, неизвестно. Только выбирая в качестве аргумента эмпирической функции распределения правую границу интервала (xi -1 -xi), мы уверены, что все варианты, попавшие в этот интервал, будут учтены (просуммированы) в значении накопленной частоты (накопленной относительной частоты), соответствующей этому интервалу. Поэтому в случае интервального ряда значения и H (x) точно определены лишь для правой границы интервала: x = xi. В остальных точках интервала xi- 1 < x < xi значения и H (x) можно задать лишь приближенно. Примером может служить кумулята, отрезки прямых которой представляют собой выраженную в графической форме линейную интерполяцию значений и H (x) на интервале xi- 1 < x < xi. Замечание 2. В случае дискретного ряда использовать кумуляту для изображения и H (x) можно лишь условно, для наглядности. Более корректным является изображение эмпирической функции распределения , а также H (x) по аналогии с теоретической функцией распределения дискретной случайной величины (рис. 3) ступенчатым графиком - отрезками прямых, параллельных оси абсцисс; длины отрезков - hi = xi - xi -1 , расстояния от отрезков до оси абсцисс - , или H (xi). Пример 1. Имеется распределение 80 предприятий по числу работающих на них (чел.):
Построить полигон распределения частот. Решение. Признак Х - число работающих (чел.) на предприятии. В данной задаче признак Х является дискретным. Поскольку различных значений признака сравнительно немного - k = 7, применять интервальный ряд для представления статистического распределения нецелесообразно (в прикладной статистике в подобных задачах часто используют именно интервальный ряд). Ряд распределения - дискретный. Построим полигон распределения частот (рис. 1). Рис. 1 Пример 2. Дано распределение 100 рабочих по затратам времени на обработку одной детали (мин):
Построить гистограмму частот. Решение. Признак Х - затраты времени на обработку одной детали (мин). Признак Х - непрерывный, ряд распределения - интервальный. Построим гистограмму частот (рис. 2), предварительно определив (k = 6) и плотность частоты .
Рис. 2 Пример 3. В распределении, данном в примере 1, найти накопленные частоты H ( i) и построить кумуляту. Решение. Используем значения Н (х): H (x 1)=0, H (xi)= H (xi -1)+ mi -1 (i= 2, 3, ј, k+ 1, k =7).
На рис. 3 показана кумулята распределения предприятий по числу работающих (чел.). Пример 4. В распределении, данном в примере 2, составить эмпирическую функцию распределения и построить кумуляту относительных частот. Решение. Используем значения Н (х): H (x 0)=0, H (xi)= H (xi -1)+ mi (i= 1, 2, ј, k, k =6). Проверка: 1.
Построим кумуляту распределения (рис. 4). Рис. 3
Рис. 4
|