![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Гигиенические основы компьютеризации обучения
Разработка компьютерных технологий обучения в стране началась в середине 1970-х и достигла уровня массового внедрения в середине 1980-х гг. Современные информационные технологии открывают учащимся доступ к различным источникам информации, повышают эффективность самостоятельной работы, дают совершенно новые возможности для творчества, обретения и закрепления различных профессиональных навыков, позволяют реализовать принципиально новые формы и методы обучения с применением средств концептуального и математического моделирования явлений и процессов. Внедрение в учебный процесс гипертекстовых технологий обеспечило учащимся и преподавателям принципиально новые возможности работы с текстовыми документами. Технологии мультимедиа не только превратили ПК в полноценного собеседника, но и позволили учащимся, не выходя из учебного класса/дома, присутствовать на лекциях выдающихся ученых и педагогов, стать свидетелями исторических событий прошлого и настоящего, посетить самые значительные музеи и культурные центры мира, самые удаленные и интересные в географическом отношении уголки Земли. Новые возможности для учащихся и преподавателей открыли телекоммуникационные технологии. Наблюдения специалистов показали, что работа в компьютерных сетях актуализирует потребность учащихся быть членом социальной общности. Отмечаются улучшение грамотности и развитие речи детей через телекоммуникационное общение, повышение их интереса к учебе и, как следствие, общий рост успеваемости. По мнению российских экспертов, новые информационные технологии обучения (НИТО) в образовательных учреждениях позволяют повысить эффективность практических и лабораторных занятий по естественнонаучным дисциплинам не менее чем на 30%, объективность контроля знаний учащихся — на 20—25%. Успеваемость в контрольных группах, обучающихся с использованием НИТО, как правило, выше в среднем на 0, 5 балла (при 5-балльной системе оценки). Скорость накопления словарного запаса при компьютерной поддержке изучения иностранных языков повышается в 2—3 раза. Современные информационные технологии, функционирующие на базе микропроцессорной, вычислительной техники, а также современных средств и систем информационного обмена, обеспечивают операции по сбору, продуцированию, накоплению, хранению, обработке и передаче информации. Новые информационные технологии: • электронно-вычислительные машины (ЭВМ); • ПК; • комплексы терминального оборудования для ЭВМ всех классов; • локальные вычислительные сети; • устройства ввода—вывода информации; • средства ввода и манипулирования текстовой и графической информацией; • средства архивного хранения больших объемов информации и другое периферийное оборудование современных ЭВМ; • устройства для преобразования данных из графической или звуковой форм их представления в цифровую и обратно; • средства и устройства манипулирования аудиовизуальной информацией (на базе технологии мультимедиа и систем «виртуальная реальность»); • современные средства связи; • системы искусственного интеллекта; • системы машинной графики; • программные комплексы (языки программирования, трансляторы, операционные системы, пакеты прикладных программ). Практически все эти средства в качестве основного «рабочего» устройства имеют видеодисплейные терминалы (ВДТ). Кабинеты вычислительной техники в школах оборудованы ПК различного типа, которые в большинстве своем не удовлетворяют гигиеническим требованиям. При оценке конструктивных решений ПК прежде всего обращается внимание на размер экрана ВДТ и клавиатуру. Не желательно использование дисплеев с размером экрана по диагонали менее 31 см. Конструктивные особенности ПК должны обеспечивать выполнение движений руками школьников в пределах поля зрения, а траектория движений не должна выходить за зону досягаемости. Используемая в настоящее время в ПК клавиатура КВЕРТИ (QWERTY), названная так по последовательности первых 6 букв в верхнем ее ряду, была разработана в конце XIX в. без эмпирических исследований. Она многократно критиковалась специалистами за несовершенное расположение клавиш, при котором требуются непропорциональные усилия самых слабых пальцев каждой руки. В настоящее время ни одна из предложенных клавиатур не рассчитана на анатомо-физиологические особенности детского организма. При работе с ПК школьники сталкиваются прежде всего с физическими факторами и разнообразными факторами воздушной среды кабинетов информатики и электронно-вычислительной техники. Основные физические факторы, воздействующие на организм школьников в компьютерных классах: • электростатическое поле; • электромагнитное поле 50 Гц; • электромагнитное поле радиочастот. Электростатическое поле, даже не вызывая характерных для воздействия этого фактора в промышленных условиях изменений в нервной и эндокринной системах у пользователей, обладает способностью «заряжать» микрочастицы, пылинки, препятствуя их оседанию. Дышать таким пылевым «коктейлем» — значит подвергаться дополнительному риску развития аллергических заболеваний кожи, глаз, верхних дыхательных путей. Электромагнитное, ультрафиолетовое, инфракрасное излучения и электростатическое поле от ВДТ являются низкоинтенсивными и, как правило, на расстоянии 30—50 см от экрана не превышают предельно допустимый уровень (ПДУ). Ультрафиолетовое, инфракрасное излучение в несколько десятков раз ниже ПДУ. ПК, установленные в кабинетах информатики, не являются источниками опасного для здоровья детей рентгеновского излучения. Однако последнее, даже ничтожно малых интенсивностей, способствует ионизации воздуха, и при значительном числе ВДТ в компьютерном классе количество ионов может увеличиваться. Избыток же положительных ионов считается неблагоприятным для человека. В норме их количество не должно превышать 5000 в 1 см3. Данные отечественных исследований согласуются с оценками зарубежных специалистов. В частности, в Канаде, США не выявлено факта влияния ионизирующего и не ионизирующего излучения при работе с ВДТ. Работа ПК сопровождается генерацией шума. Его уровни могут составлять 60—65 дБА при гигиеническом регламенте 50 дБА. В классах информатики и вычислительной техники образовательных учреждений создаются специфические условия окружающей среды (ухудшение качества воздушной среды и микроклимата, световой обстановки и др.). Практически во всех компьютерных классах регистрируются недостатки в системе освещения рабочих поверхностей. Искусственная освещенность оказывается, как правило, сни- лсенной на клавиатуре и рабочих местах для теоретических занятий (130—200 лк) и завышенной на экранах мониторов (200-250 лк). Нерегулярное включение систем кондиционирования и отсутствие проветривания, как правило, приводят к значительному ухудшению параметров микроклимата. Анализ микроклимата кабинетов^ информатики показывает, что во все сезоны года температура воздуха может превышать оптимальные уровни в 70% случаев и составлять 22-23 °С. При южной ориентации кабинетов информатики температура воздуха в весенний период может резко увеличиваться, достигая 25 °С. Относительная влажность воздуха в 60% помещений находится на уровне нижней границы нормы (30%). Значительная сухость воздуха является существенным недостатком кабинетов (классов), где размещаются ПК. При низких значениях влажности велика опасность накопления в воздухе микрочастиц с высоким электростатическим зарядом, способных адсорбировать частицы пыли, и поэтому обладающих аллергизирующими свойствами. Кабинеты информатики и электронно-вычислительной техники насыщены полимерными, синтетическими и лакокрасочными материалами. Это приводит к дополнительному загрязнению воздушной среды помещений вредными химическими веществами, особенно при повышении температуры и изменении влажности воздуха, которые обусловливаются работой ПК. При изучении внешней среды в помещениях, где находятся ПК, установлено, что к концу занятий концентрация углекислого газа в 2 раза превышает предельно допустимую концентрацию (ПДК), а количество нетоксичной пыли увеличивается в 2-4 раза сверх допустимого уровня. Увеличивается и содержание аммиака в воздухе: в 37% проб ПДК превышается в 1, 5—2 раза. Содержание кислорода может снижаться до 1, 5—2%. Санитарно-химическая оценка воздушной среды классных помещений позволяет идентифицировать ряд химических соединений (табл. 3.12).
На учашихся оказывается комбинированное воздействие факторов малой интенсивности, последствия которого могут не укладываться в общепризнанные данные о влиянии этих факторов в незначительных дозах в отдельности. Ведущее значение при этом имеет воздействие электромагнитного излучения широкого спектра. Важнейшие характеристики видеотерминальных устройств: • уровни электромагнитного излучения в инфракрасном, микроволновом, ультрафиолетовом и рентгеновском диапазонах; • уровень общей освещенности экрана; • яркостные и контрастные характеристики изображения, глубина пульсаиии яркости; • четкость и стабильность изображения; | размер знаков. Работа с ПК нередко усугубляется нерациональным построением учебного дня, недели: наблюдается превышение учебной нагрузки на 1—3 ч в неделю; до 30% учащихся посещают факультативные занятия, причем половина из них занимаются 2—3 раза в неделю, в то время как недельная факультативная нагрузка не должна превышать 2 учебных часов, при этом гигиенические рекомендации о времени проведения факультативных занятий не учитываются. Часто отмечается «нерациональная» рабочая поза учащегося: угол наклона головы, угол наклона верхнегрудного отдела туловища более 45е, расстояние от глаз до экрана ВДТ менее 50 см. Применение ПК в учебном процессе увеличивает объем информации, сообщаемой ученику на уроке, активизирует по сравнению с обычными уроками организацию познавательной деятельности детей. В то же время условия работы за дисплеем существенно отличаются от привычной работы в классе: частое переключение внимания с клавиатуры на экран, анализ и корректировка полученных на экране результатов и т.д. Занятия с, использованием ПК могут создавать зрительные перегрузки при той же напряженности и длительности учебной деятельности, которая соответствует гигиеническим нормам, разработанным применительно к традиционным видам учебной нагрузки. Работа с ВДТ сопряжена со значительным зрительным напряжением, так как она тяжелее, чем с бумажными текстами. При работе с бумажным носителем информация в глаз поступает как отраженный свет, а при работе с ВДТ глазом воспринимаются самосветящиеся объекты (точки). Кроме того, изображение на ВДТ дискретно (частота 50—70 Гц и выше). Эти практически неустранимые факторы существенно затрудняют зрительное восприятие и часто усугубляются качеством ПК. Работа с ВДТ вызывает напряжение зрительных функций, которое обусловлено следующими причинами: • необычный контраст между фоном и символами на экране ВДТ; • символы на экране не имеют такой четкости, как печатный текст, • символы на экране часто имеют непривычную форму; • расстояние между глазами и экраном и направление взгляда не могут быть по желанию изменены и часто отличаются от условий, которые бывают обычно при чтении печатного текста; • фокусировка горизонтального взгляда труднее, чем взгляда, направленного вниз; • осознанное или бессознательное восприятие дрожания или мелькания изображения; • различные отражения в экране, причем этот фактор приобретает возрастающее значение, если ПК установлен неправильно или его поверхность лишена антибликового покрытия; • фиксация символов на экране ВДТ выполняется в плоскости, отличной от плоскости экрана, и она должна быть ограничена умственными усилиями. Дети легко овладевают техникой работы на клавиатуре. Это в значительной степени обусловлено возрастными изменениями двигательных качеств. Применительно к занятиям с ПК — это возможность нервно-мышечного аппарата, главным образом мелких мышц кисти, справляться с этой работой. Возрастная физиология свидетельствует, что быстрота движений с возрастом увеличивается. Наибольшее развитие этого качества достигается у детей 14—15 лет. В 16—17 и 18 лет этот показатель оказывается не более высоким, чем в 14—15 лет. Это особенно проявляется при малых сопротивлениях движению, что характерно для работы с клавиатурой электронно- вычислительной техники. Быстрота двигательных реакций зависит от степени функционального развития нервных центров и периферических нервов, что в конечном счете определяет скорость проведения нервного импульса. У детей максимальные скорости проведения импульса в волокнах периферических двигательных нервов достигают таких же величин, как и у взрослых, в возрасте 6 лет. К 14—15 годам, когда дети приступают к практическим занятиям по информатике в компьютерном классе школы, уровень мор- фофункционального развития основных систем, обеспечивающих успешность работы с ПК, достигает параметров взрослого человека. Однако не менее важны и такие свойства, как лабильность нервной системы, повышенная утомляемость, высокая чувствительность к неудовлетворительным условиям обучения, которые могут оказывать существенное влияние на успешность овладения компьютерной грамотностью и состояние отдельных систем и органов ребенка. Наиболее актуальной проблемой работы с ВДТ является ее воздействие на зрение. Работающие с ВДТ испытывают неприятные ощущения в области глаз, определяемые как проявление астенопии. Под этим термином подразумеваются прежде всего зрительные симптомы (пелена перед глазами, неясные очертания предмета). Второй компонент этого понятия — «глазные» симптомы: ощущение усталости глаз, повышения их температуры, дискомфорта или боли. Частота астенопии у пользователей ВДТ в разное время составляет 40-92%, а ежедневно 10-40%. Отмечаются выраженные нагрузки на опорно-двигательный аппарат: остисто-крестцовая и трапециевидная мышцы при работе с персональными электронно-вычислительными машинами (ПЭВМ) постоянно испытывают нагрузку на уровне 9—14% от максимальнойпроизвольной силы этих мышц, что соответствует значительной нагрузке на них. В совокупности с большим количеством движений руками при работе с клавиатурой (а они могут достигать 60—80 тыс.) возможны утомление, переутомление и развитие профессиональных заболеваний. Это происходит в результате недостаточного восстановления работоспособности в период между работой с ВДТ. Скорость процессов восстановления и быстрота смены фаз восстановительного периода зависят от интенсивности предшествующей деятельности: чем интенсивнее и короче была работа до утомления, тем выше скорость восстановления. После медленно развивающегося утомления восстановление идет медленно. Так как локальная работа кистями рук характеризуется небольшими величинами, но выполняется достаточно длительно, то и восстановление идет медленно. Выполнение большого количества локальных движений при малой общей двигательной активности вызывает замедление восстановления и изменение нормального хода восстановительного процесса. При этом неблагоприятные сдвиги суммируются, переходят в переутомление, являющееся по сути предпатологическим состоянием нервно-мышечного аппарата рук. Характер и степень благоприятного или отрицательного воздействия работы на ПК определяется комплексом внешних и внутренних факторов. К внешним факторам относятся прежде всего связанные с ПК, а также педагогикой, такие показатели, как: • продолжительность работы за дисплеем; | качество изображения (собственно «дисплейные» факторы); • эргономика рабочего места; • состояние окружающей среды (освещенность, микроклимат); • содержание и объем работы, определяемые характером и трудностью учебного материала; • методика преподавания, структура занятия. Такие внешние факторы, как эргономика рабочего места, состояние окружающей среды (освещенность, микроклимат и др.), методика преподавания, структура занятия, поддаются контролю и нормируются. Неблагоприятные изменения функционального состояния подростков отмечаются непосредственно после уроков информатики: у школьников в 2 раза снижается работоспособность, на 10—15% — скорость зрительно-моторных реакций, уменьшается критическая частота слияния световых мельканий, что также свидетельствует оразвитии зрительного утомления. У подростков с высокой мотивацией к занятиям информатикой выявляются еще более существенные сдвиги в функциональном состоянии организма: у каждого 3-го из них диагностируется выраженное утомление. Установлен утомляющий эффект мелькающего изображения. По этой причине некоторые школьники с нежеланием приступают к работе с ПК, а 5% детей указывают на плохую переносимость таких занятий. Это может быть обусловлено тем, что ритмические сигналы, исходящие от дисплея, провоцируют приступы мимолетных, иногда на доли секунд, перерывов в сознании (абсансы) без моторных и вегетативных эффектов или коротких приступов дурноты, удушья. В основе возникновения этих расстройств лежит повышенная судорожная готовность детского организма. Известные случаи «телевизионной эпилепсии* усиливают важность этой проблемы. Более половины старшеклассников (55%) после работы на ПК высказывают жалобы либо на общее утомление, либо на неприятные ошушения в области глаз (усталость, мелькание и др.). Почти треть из них жалуются и на то, и на другое. Это обусловлено нечетким изображением на экране ВДТ, которое приводит к постоянной «поднастрой- ке* хрусталика глаза, т.е. поиском оптимума зрительного восприятия, что может повлечь за собой переутомление мышечного аппарата глаза и последующее снижение зрения. Оценка функционального состояния зрительного анализатора школьников старшего возраста при работе на ПК показывает, что работа в течение 45 мин приводит к достоверному снижению устойчивости аккомодации. Более длительная работа усугубляет этот процесс и обусловливает появление и увеличение остаточного напряжения цилиарной мышиы или спазма аккомодации. Уже после 20 мин работы с дисплеем наступает снижение видимости (увеличение порога контрастной чувствительности), скорости зрительно-моторных реакций у учеников Ю-х классов (рис. 3.8, 3.9), На динамику развития зрительного утомления учащихся 9—10-х классов на занятиях с ПК и течение восстановительного периода влияют качество ПК: их соответствие или несоответствие гигиеническим требованиям (рис. 3.10).
|