Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






ДК1. Приведите все нагрузки, действующие на арку. Какие вы знаете методы разбивки геометрической оси арки? Как выполняется статический расчет?






См. СНиП «Нагрузки и воздействия». Нагрузки, действующие на арку: постоянная, временная (снеговая, ветровая, технологическое оборудование).

Ветровая нагрузка учитывается, если высота арки больше 4 м. Знак и значение аэродинамического коэффициента принимается по СНиП «Нагрузки и воздействия». Статический расчет арок производится по правилам строительной механики (по любой вычислительной программе). Для нахождения расчетных усилий в любом сечении арки, отсчитываемой от левой опоры, определяются координаты сечения хn и yn, а также sinjn и сosjn (j - угол наклона касательной в сечении к горизонту). М, Q, Ni – определяется к каждой точке. Арки работают на сжатие с изгибом. В треугольных арках сжатие с изгибом создаётся конструктивным путем. Особенность конструкции такой арки заключается во внецентренном решении узлов, что обеспечивается смещением центра упорных площадок смятия Fсм в узлах на величину е от геометрической оси элемента. Конструктивно это достигается или срезами деревянных элементов в торцах на глубину 2е от верхней грани (как в коньковом узле), или соответствующим расположением упорной детали (как в опорном узле). Благодаря этому заметно уменьшается расчетный изгибающий момент в пролете элемента

В арках кругового очертания узлы центрированы.

Геометр. расчет заключается в определении размеров длин всех элементов, координат точек и углов. Для треугольной арки – угол наклона и длину полуарки. Для сегментной арки – дополнительно радиус кривизны.

Если f/l≤ 1/4, то применяется неравномерная разбивка оси на расчетные интервалы S1 ≠ S2 ≠ S3

При f/l> 1/4 равномерная разбивка оси, т.е S1 = S 2= S3.



Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал