Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Представление об алгоритмически неразрешимых проблемах
АЛГОРИТМИЧЕСКИ НЕРАЗРЕШИМЫЕ ПРОБЛЕМЫ
План лекции: 1. Формальное определение алгоритма. 2. Представление об алгоритмически неразрешимых проблемах.
Формальное определение алгоритма Определение. Словарный оператор называется вычислимым по Тьюрингу, если существует машина Тьюринга с алфавитом ленты , которая работает следующим образом: если на ленту записать произвольное слово, установить головку на правый символ и запустить машину по ее программе, то после остановки машины на ленте будет написано слово . Приведем одно из возможных формальных определений алгоритма: алгоритм – это словарный оператор, вычислимый по Тьюрингу.
Представление об алгоритмически неразрешимых проблемах Определение алгоритма состоит в том, что если ранее это понятие существовало на неточном, интуитивном уровне, то теперь ему сопоставлен некоторый точно определенный объект – программа машины Тьюринга. Фактически программа представляет собой слово в некотором алфавите и можно себе представить, что, анализируя какую-либо проблему, мы придем к выводу о несуществовании указанного слова, тем самым к алгоритмической неразрешимости проблемы. Приведем несколько примеров алгоритмически неразрешимых проблем. Первый результат об алгоритмической неразрешимости был получен в 1947 г. независимо друг от друга А.А. Марковым и Э.Л. Постом по проблеме равенства в полугруппах. 1°. Проблема равенства в полугруппах. Полугруппой или ассоциативной системой называют множество, на котором определена одна ассоциативная операция. Примером полугруппы является совокупность всевозможных слов в алфавите (1) с операцией конкатенации. называется свободной полугруппой с образующими. Свободная полугруппа с одной образующей состоит из слов и изоморфна полугруппе неотрицательных целых чисел с операцией сложения. На основе свободной полугруппы можно построить новые полугруппы при помощи определяющих соотношений. Пусть (2) есть произвольная совокупность пар слов из . Элементарным преобразованием называется переход от слова к слову или обратно. Два слова из называются эквивалентными, если от одного можно перейти к другому конечным числом элементарных преобразований. Проблема равенства слов в полугруппе заключается в отыскании алгоритма, устанавливающего эквивалентность любой пары слов. Пусть определяющие соотношения имеют вид . Составом слова назовем вектор , где – количество букв в слове , . Элементарные преобразования не изменяют состав слова, причем каждое слово можно привести к виду , в котором буквы стоят в алфавитном порядке. Отсюда следует, что два слова эквивалентны в том и только том случае, когда они имеют одинаковый состав, что и дает алгоритм эквивалентности для данной полугруппы. А.А. Марков и Э.Л. Пост построили примеры полугрупп, для которых алгоритма распознавания равенства (эквивалентности) не существует. В дальнейшем число таких примеров значительно увеличилось. Приведем пример Г.С. Цейтлина: полугруппа с образующими и определяющими соотношениями имеет неразрешимую проблему равенства слов. 2°. Проблема полноты автоматного базиса. Ранее была сформулирована задача о полноте автоматного базиса: для заданного набора структурных автоматов требуется установить возможность построения на их основе любого наперед заданного автомата. В 1964 г. М.И. Кратко установил алгоритмическую неразрешимость задачи о полноте автоматного базиса. Это означает, что не существует машины Тьюринга, работающей следующим образом: если на ленту машины поместить описания автоматов и запустить ее в работу, то машина остановится в состоянии!, если система полная и в состоянии!!, если эта система неполная. 3°. 10-я проблема Гильберта. В 1900 г. на II Международном Конгрессе математиков Д. Гильберт выступил с докладом «Математические проблемы», в котором сформулировал 23 проблемы, «исследование которых может значительно стимулировать развитие науки». Десятая из этих проблем называется «Задача о разрешимости диофантова уравнения». Пусть задано диафантово уравнение с произвольными неизвестными и целыми рациональными чис ловыми коэффициентами. Указать способ, при помощи которого возможно после конечного числа операций установить разрешимо ли это уравнение в целых рациональных числах. Диофантовым называют уравнение вида , (3) в котором – многочлен -ой степени от переменных с целыми коэффициентами: . В 1970 г. Ю.И. Митиясевич доказал, алгоритма, устанавливающего разрешимость диофантова уравнения не существует. 4°. Проблема остановки машины Тьюринга. Так как набор инструкций для машины Тьюринга может быть задан произвольно, то возможны ситуации, когда машина работает без остановки, то есть не переходит в заключительное состояние. Рассмотрим, например, машину с программой Машина с данной программой будет работать следующим образом: если в начальном слове на ленте есть нули, то дойдя до первого из них машина остановится; если начальное слово состоит из одних единиц, то головка будет без остановки перемещаться влево. Проблема остановки машины Тьюринга состоит в следующем: для данной машины Тьюринга и данного слова требуется установить остановится ли машина, начав работу с правого символа слова или нет. Можно доказать, что не существует алгоритма для решения этой проблемы.
|