Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Расчет стандартного отклонения ^ для фона контрольной группы






Испытуемые Число пора- Средняя Отклоне- Квадрат от-женных мише- ние от клонения от ней в серии средней (d) средней (d2)

19 10

15, 8 15, 8 15, 8

-3, 2 +5.8 +3, 8

10.24 33, 64 14, 44

15 22 15, 8 -6, 2 38, 44

Сумма (^)d2 = 131, 94

131, 94

Варианса (s2} = • = 9, 42.

Н-1 14 Стандартное отклонение (?) = ^'варианса = л/9, 42 == 3, 07.

' Формула для расчетов и сами расчеты приведены здесь лишь в качестве иллюстрации В наше время гораздо проще приоб­рести гакой карманный микрокалькулятор, в котором подобные расчеты уже заранее запрограммированы, и для расчета стан­дартного отклонения достаточно лишь ввести данные, а затем нажать клавишу s.

О чем же свидетельствует стандартное отклонение, равное 3, 07? Оказывается, оно позволяет сказать, что большая часть результатов (выраженных здесь числом пораженных мишеней) располагается в пре­делах 3, 07 от средней, т.е. между 12, 73 (15, 8 - 3, 07) и 18, 87 (15, 8 + 3, 07).

Для того чтобы лучше понять, что подразумевается под «большей частью результатов», нужно сначала рассмотреть те свойсгва стандарт­ного отклонения, которые проявляются при изучении популяции с нор­мальным распределением.

Статистики показали, что при нормальном распределении «большая часть» результатов, располагающаяся в пределах одного стандартного отклонения по обе стороны от средней, в процентном отношении всегда одна и та же и не зависит от величины стандартного отклонения: она соответствует 68% популяции (т.е. 34% ее элементов располагается слева и 34%-справа от средней):

Приложение Б

Точно так же рассчитали, что 94, 45% элементов популяции при нормальном распределении не выходит за пределы двух стандартных отклонений от средней:

и что в пределах трех стандартных отклонений умещается почти вся популяция - 99, 73 %.

99.73%

Учитывая, что распределение частот фона контрольной группы довольно близко к нормальному, можно полагать, что 68% членов всей популяции, из которой взята выборка, тоже будет получать сходные результаты, т.е. попадать примерно в 13-19 мишеней из 25. Распределе­ние результатов остальных членов популяции должно выглядеть следу­ющим образом:

Статистика и обработка данных

99, 7%

95, 4%

68, 3%

34, 1 % 34, 1 % 2, 2%

 

0, 13%

13, 6%

13, 6%

0, 13%

 

6, 59 9, 66 12, 73 15, 8 18, 87 21, 94 25, 01

-Id +1(7

-2а +2о

-За +3а

Гипотетическая популяция,

из которой взята контрольная группа (фон)

Что касается результатов той же группы после воздействия изучаемо­го фактора, то стандартное отклонение для них оказалось равным 4, 25 (пораженных мишеней). Значит, можно предположить, что 68% резуль­татов будут располагаться именно в этом диапазоне отклонений от средней, составляющей 16 мишеней, т.е. в пределах от 11, 75 (16 — 4, 25) до 20, 25 (16 + 4, 25), или, округляя, 12 — 20 мишеней из 25. Видно, что здесь разброс результатов больше, чем в фоне. Эту разницу в разбросе между двумя выборками для контрольной группы можно графически представить следующим образом:

12, 73 15, 8 18, 87

-la +lo Фон

 

294 Приложение Б

-1о +1о После воздействия

Поскольку стандартное отклонение всегда соответствует одному и тому же проценту результатов, укладывающихся в его пределах вокруг средней, можно утверждать, что при любой форме кривой нормального распределения та доля ее площади, которая ограничена (с обеих сторон) стандартным отклонением, всегда одинакова и соответствует одной и той же доле всей популяции. Это можно проверить на тех наших выборках, для которых распределение близко к нормальному, -на дан­ных о фоне для контрольной и опытной групп.

Итак, ознакомившись с описательной статистикой, мы узнали, как можно представить графически и оценить количественно степень разбро­са данных в том или ином распределении. Тем самым мы смогли понять, чем различаются в нашем опыте распределения для контрольной группы до и после воздействия. Однако можно ли о чем-то судить по этой разнице - отражает ли она действительность или же это просто артефакт, связанный со слишком малым объемом выборки? Тот же вопрос (только еще острее) встает и в отношении экспериментальной группы, подверг­нутой воздействию независимой переменной. В этой группе стандартное отклонение для фона и после воздействия тоже различается примерно на 1 (3, 14 и 4, 04 соответственно). Однако здесь особенно велика разница между средними-15, 2 и 11, 3. На основании чего можно было бы утверждать, что эта разность средних действительно достоверна, т.е.-достаточно велика, чтобы можно было с уверенностью объяснить ее влиянием независимой переменной, а не простой случайностью? В какой степени можно опираться на эти результаты и распространять их на всю популяцию, из которой взята выборка, i. е. утверждать, что потребление марихуаны и в самом деле обычно ведет к нарушению глазодвигатель-ной координации?

На все эти вопросы и пытается дать ответ индуктивная статистика.

Статистика и обработка данных 295


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал