Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Элементарные преобразования матриц.
1. Перестановка местами двух параллельных рядов матрицы. 2. Умножение всех элементов ряда на число отличное от нуля. 3. Прибавление ко всем элементам ряда матрицы соответствующих элементов параллельного ряда, умноженных на одно и то же число.
Матрицы A и B называются эквивалентными, когда одна получается из другой путем элементарных преобразований. Эквивалентность двух матриц обозначается с помощью символа следования, т.е. При помощи элементарных преобразований любую матрицу можно привести к матрице, в которой на главной диагонали стоит 1, а все остальные элементы равны 0. такую матрицу называют канонической.
Если A – квадратная матрица, то обратной для нее матрицей называется матрица, обозначаемая
где E – единичная матрица. Утверждение. Квадратная матрица Утверждение. Элементы где Примеры. Найти матрицу Решение. Прежде всего, вычислим определитель матрицы
Следовательно, для Воспользуемся теперь формулой, выражающей элементы обратной матрицы через алгебраические дополнения к элементам транспонированной матрицы. Для Вычислим последовательно элементы
С учётом полученного обратная к
|