Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Особенности суточного хода движения устьиц у разных растении. Суточный ход процесса транспирации.
Суточные колебания транспиранни. Периодичность суточного хода транспирации наблюдается у всех растений но сильно отличается у разных видов и в неодинаковых погодных условиях. У деревьев, теневыносливых растений, многих злаков и т. д. (гидростабильные виды) с совершенной регуляцией устьичной траиспирации испарение волы достигает максимума до установления максимума дневной температуры. В полуденные часы транспирация падает и вновь может увеличиваться в предвечерние часы при снижении температуры воздуха. Такой ход транспирации приводит к незначительным суточным изменениям осмотическою давления и содержания воды в листьях. У видов, способных переносить резкие изменения содержания воды в клетках в течение дня (гидролабильные виды), наблюдается суточный ход транспирации с максимумом и полуденные часы. В обоих случаях ночью транспирация минимальна. Колебания интенсивноети транспирации отражают изменения степени открытия устьиц в течение суток. Закрывание устьиц в полдень может быть связано как с увеличением уровня СО2 в листьях при повышении температуры воздуха (из-за усиления дыхания и фотодыхания, так и с возможным водным дефицитом, возникающим в тканях при высокой температуре, низкой влажности воздуха и особенно в ветреную погоду. Это приводит к увеличению концентрации абсцизовой кислоты и закрыванию устьиц. Снижение температуры воздуха во второй половине дня способствует открыванию устьиц и усилению фотосинтеза.
крупного той же площади. Это связано с явлением повышенной краевой диффузии. Изменение степени открытости устьиц — устьичная регулировка — является основным механизмом контроля транспирации растением. Третий этап. Диффузия паров воды от поверхности листа в более далекие слои атмосферы. Этот этап регулируется лишь условиями внешней среды: температурой, влажностью воздуха, скоростью ветра. Степень раскрытия устьиц зависит от интенсивности света, оводненности тканей листа, концентрации С02 в межклетниках, температуры воздуха и других факторов. В зависимости от фактора, запускающего двигательный механизм (свет или начинающийся водный дефицит в тканях листа), различают фото- и гидроактивное движение устьиц. Существует также гидропассивное движение, вызванное изменением оводненности клеток эпидермиса и не затрагивающее метаболизм замыкающих клеток. Например, глубокий водный дефицит может вызвать подвядание листа, эпидермальные клетки при этом, уменьшаясь в размерах, растягивают замыкающие клетки, и устьица открываются. Или, наоборот, сразу после дождя эпидермальные клетки настолько разбухают от воды, что сдавливают замыкающие клетки, и устьица закрываются. У растений С3-видов при условиях в пределах нормы процесс устьичных движений имеет циркад-ный ритм: днем устьица открыты, а ночью закрыты (или полузакрыты). Но в полдень, когда возникает дефицит воды в листе, устьица могут быть частично закрыты и днем. Устьичные движения связаны с ионными потоками К+, СГ и воды из апопласта в вакуоль при открывании, и в обратном направлении — из вакуоли в апопласт при закрывании
десмотрубка, состоящая из спирально расположенных белковых субъединиц. Десмотрубка сообщается с мембранами ЭР соседних клеток. Вокруг десмотрубки имеется слой цитоплазмы, которая может соединяться с цитоплазмой соседних клеток. Таким образом, связи между клетками могут осуществляться через цитоплазму, плазмалемму, ЭР и клеточные стенки. Единая система цитоплазмы клеток тканей и органов называется симпластом. Будучи продуктом метаболической активности протопласта, клеточная стенка выполняет функцию защиты содержимого клетки от повреждений и избыточной потери воды, поддерживает форму (за счет тургора) и определяет размер клетки, служит важным компонентом ионного обмена клетки (как ионообменник) и местом транспорта веществ из клетки в клетку внеклеточным путем (апопластный транспорт). Биогенез клеточной стенки играет важную роль в росте и дифференцировке клетки. Фазы роста клеток по Саксу: деление, растяжение, дифференциация. Формирование клеточной стенки: 1)После деления клетки, на месте разрыва образуется цепочка пузырьков – визикул (их продуцирует Аппарат Гольджи).Потом из них образуется срединная пластинка. 2)Затем откладываются фибриллы целлюлозы с пектатом кальция образующие каркас для первичной оболочки. На этот каркас накладываются с двух сторон слои гемицеллюлозных фибрилл пропитанных пектиновым веществом. Первичная оболочка обладает растяжимостью, и в этот период клетка растет растяжением. 3)Со временем откладываются все новые слои гемицеллюлозы но уже пропитанные лигнином. Теперь клеточная стенка становится более прочной, и уже не обладает растяжимостью.
Основные закономерности поступления воды в растение. Возникновение градиента водного потенциала в растении. Градиент водного потенциала как движущая сила водного тока в растении. Понятие водного потенциала, и его составляющие. В почве не вода движется к корню, а корень должен устремляться за водой. то обстоятельство предопределяет специфическую организацию корневой системы, которая имеет очень большие размеры и обладает исключительной способностью к ветвлению. Общая поверхность корней обычно превышает поверхность надземных органов в 140—150 раз. Известно, что корень делится на четыре зоны: деления клеток, растяжения, всасывания, или корневых волосков, и проводящую, или опробковения. Зона деления клеток, защищенная корневым чехликом, нуждается в небольшом количестве воды. Клетки этой зоны характеризуются крупными ядрами, большой насыщенностью цитоплазмой, отсутствием вакуолей, первичным строением клеточных стенок. Их водный потенциал определяется только матричными силами, т. е. способностью к набуханию коллоидов протоплазмы и клеточных стенок (у = ут). Интенсивное поглощение воды начинается с зоны растяжения. Здесь идет усиленное новообразование белков цитоплазмы. Их содержание в пересчете на клетку возрастает в 1, 5—2 раза, что увеличивает возможности матричного связывания воды. Поэтому водный потенциал определяется суммой матричного и осмотического потенциалов (у = уот + у п) и обеспечивает колоссальную способность поглощать воду. Зона корневых волосков является основной поглощающей зоной корня, которая направляет воду в русло дальнего транспорта. Здесь на 1 мм находится 230—500 корневых волосков. Сильная вакуолизация клеток этой зоны, высокая степень развития мембранных структур и упругость закончивших формирование клеточных стенок обеспечивают надежные механизмы осмотической регуляции транспорта воды, в которых наряду с осмотическими силами большое значение имеет развиваемое гидростатическое давление (у = уп + ур). Проводящая зона корня характеризуется опробковением покровных тканей. Ее поглотительная функция заметно снижена, хотя показано, что опробковевшие части корня также могут поглощать воду. Особое значение это имеет после окончания вегетационного периода у многолетних растений. Водный потенциал (у). Выражает способность воды в данной системе совершить работу по сравнению с той работой, которую при тех же условиях совершила бы чистая вода. Рассчитывается по уравнению где м и м— химические потенциалы воды в системе и чистой воды; V „ — парциальный мольный объем воды (для чистой воды и разбавленных растворов принимают равным 18 см моль-1). Водный потенциал, являясь фактически мерой активности воды, определяет термодинамически возможное направление ее транспорта. Молекулы воды всегда перемещаются от более высокого водного потенциала к более низкому, подобно тому как вода течет вниз, переходя на все более низкий энергетический уровень. Когда система находится в равновесии с чистой водой, у=0. В почве, растении, атмосфере активность воды и способность совершать работу ниже, чем у чистой воды, поэтому у обычно отрицателен. Водный потенциал имеет размерность энергии, деленной на объем, что позволяет выражать его в атмосферах, барах или паскалях (1 атм = 1, 013 бар = 105 Па; 103 Па = 1 кПа, 106 Па = 1 МПа). Водный потенциал растения является алгебраической суммой следующих четырех составляющих: где уя — осмотический, \|/; я — матричный, ур — гидростатический, у8— гравитационный потенциалы. Соотношение между ними и вклад в водный потенциал сильно различаются в зависимости от объекта и окружающих условий.
|