Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Методы стандартизации коэффициентов






Еще одним способом устранения влияния структурных факторов и является стандартизация демографических коэффициентов. Метод стандартизации был предложен и впервые применен в анализе смертности английским статистиком и демографом У. Фарром (XV. Рагг, 1807—1883).

Применение стандартизации основано на разложении общих коэффициентов на сомножители, выражающие, с одной стороны, интенсивность демографического процесса, а с другой, численность или долю соответствующего субнаселения во всем населении.

Суть стандартизации заключается в том, что реальные общие коэффициенты сравниваются с показателями некоторого условного населения, которое получается, если проделать следующее.

Интенсивность демографического процесса в некотором населении (реальном или искусственно сконструированном) или его структура принимается за стандарт. Затем для каждого из сравниваемых населений рассчитывается стандартизованный общий коэффициент, который показывает, какими были бы общие коэффициенты рассматриваемого процесса в данном населении, если бы интенсивность этого процесса в нем или его структура были бы такими же, как и в населении стандарта. При этом, в зависимости от того, что именно принимается за стандарт (интенсивность или структура), применяют различные методы стандартизации.

Наибольшее распространение имеют прямая стандартизация, косвенная и обратная, к рассмотрению которых мы и переходим. Покажем суть этих методов на примере стандартизации общих коэффициентов смертности.

При прямой стандартизации повозрастные коэффициенты смертности реального населения перевзвешиваются по возрастной структуре стандарта. Таким образом получается то число смертей, которое имело бы место в реальном населении, если бы его возрастная структура была такой же, как и возрастная структура стандарта. Разделив это число на число смертей в стандартном населении, получают индекс прямой стандартизации. Если общий коэффициент смертности стандарта умножить на этот индекс, то получим стандартизованный общий коэффициент смертности, который показывает, какова была бы величина общего коэффициента смертности в реальном населении, если бы его возрастная структура была такой же, как и возрастная структура стандарта.

В случае косвенной стандартизации поступают прямо противоположным образом: повозрастные коэффициенты смертности стандарта перевзвешиваются по возрастной структуре реального населения. Таким образом получается то число смертей, которое бы имело место в реальном населении, если бы его возрастная смертность была такой же, как и повозрастная смертность стандартного населения. Разделив число смертей в реальном населении на их ожидаемое число, получают индекс косвенной стандартизации. Если общий коэффициент смертности стандарта умножить на этот индекс, то получим стандартизованный общий коэффициент смертности, который показывает, какова была бы величина общего коэффициента смертности в реальном населении, если бы повозрастные коэффициенты смертности в нем были такими же, как и в населении стандарта.

Метод обратной стандартизации, иначе называемый методом ожидаемой численности населения, применяется в том случае, когда отсутствуют данные о возрастной структуре данного населения, но зато есть данные об его общей численности и о числе демографических событий в нем (случай нередкий во многих развивающихся странах, где переписи населения стали проводиться лишь недавно). А также, разумеется, известны повозрастные коэффициенты смертности стандарта. Зная это, можно восстановить условную среднюю численность всех возрастных групп реального населения при условии, что реальное население имеет те же повозрастные коэффициенты смертности, что и население стандарта.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал