![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Кардиосклерозе
через 2 мес после воспроизведения инфаркта порог фибрилляции у животных снижен более чем в 2 раза, а на фоне вагусной брадикардии имеется значительное число экстрасистол, которые отсутствуют в контроле. Таким образом, в соответствии с опытом клиники и результатами ранее выполненных экспериментов постинфарктный кардиосклероз увеличивает эктопическую активность сердца и вероятность возникновения его фибрилляции. Из табл. 23 также следует, что адаптация, примененная на фоне существующего постинфарктного кардиосклероза, приводит к восстановлению порога фибрилляции практически до контрольного уровня и исчезновению экстрасистол, возникающих на фоне вагусной брадикардии, т. е. адаптация к гипоксии приводит к подавлению эктопической активности сердца и снижает до контрольного уровня вероятность фибрилляции сердца при постинфарктном кардиосклерозе. Данные, представленные в табл. 24, характеризуют сократительную функцию сердца при постинфарктном кардиосклерозе и Таблица 24. Сократительная функция левого желудочка при постинфарктном кардиосклерозе
адаптации к гипоксии. Наиболее яркий факт, представленный в таблице, заключается в том, что на 30-й секунде пережатия аорты максимальное развиваемое давление, по существу отражающее развиваемую силу сокращений левого желудочка сердца, остается таким же, как на 5-й секунде пережатия. Таким образом, адаптация к гипоксии, использованная как фактор экспериментальной профилактики, устраняет нарушения электрической стабильности и сократительной функции сердца, характерные для постинфарктного кардиосклероза. Можно предположить, что наблюдавшееся в наших экспериментах под влиянием адаптации к гипоксии устранение этих явлений и уменьшение вероятности аритмий определяется действием адаптации как на уровне нервной регуляции, так и на уровне сердца, что заслуживает специального изучения. Осуществляющийся на уровне нейрогуморальной регуляции эффект адаптации к гипоксии проявляется, как было упомянуто выше, стационарной активацией синтеза РНК и белка в головном мозге, увеличением мощности адренергической регуляции, т. е. гипертрофией симпатических нейронов и надпочечников и увеличением содержания катехоламинов в последних, при одновременной частичной атрофии супраоптических ядер гипоталамуса и клубочковой зоны надпочечников, т. е. структур, ответственных за секрецию вазопрессина и альдостерона. Этот комплекс изменений объясняет противогипертензивный эффект адаптации к гипоксии, но не дает ответ на вопрос, почему адаптированные животные более резистентны к стрессу, более устойчивы к эпилептогенам, галлюциногенам. Неясным остается механизм эффективного поведения адаптированных животных в конфликтных ситуациях, где у них проявляется замечательная способность успешно реализовать жизненно важный питьевой рефлекс вопреки действию сильного болевого раздражителя [Меерсон Ф. 3., 1973]. Непонятно также, как связаны эти изменения нейрогуморальной регуляции с наблюдавшимся нами антиаритмическим эффектом адаптации. В соответствии с развиваемым представлением мы предположили, что антистрессорный, поведенческий и, наконец, антиаритмический защитные эффекты адаптации к гипоксии могут быть связаны с активацией стресс-лимитирующих систем головного мозга. Исходя из этого, в совместных исследованиях с А. Д. Дмитриевым и Э. X. Орловой мы оценили состояние одной из этих систем — системы опиоидных пептидов при адаптации к гипоксии. Для этого радиоиммунологическим методом определяли содержание наиболее активного пептида этой группы — β -эндорфина — в различных структурах головного мозга и надпочечниках у адаптированных к гипоксии и неадаптированных животных в контроле и после тяжелого эмоционально-болевого стресса. Адаптация к гипоксии проводилась в условиях барокамеры на высоте 5000 м в течение 8 нед по 6 ч в день 5 раз в нед. В табл. 25 представлены данные о содержании β -эндорфина— опиоидного пептида, обладающего анальгетическим действием и подавляющего возбуждение адренергической регуляции в трех различных структурах головного мозга и надпочечниках. Из табл. 25 видно, что сама по себе адаптация к гипоксии порождает лишь некоторую тенденцию к увеличению содержания β -эндорфинов. Эмоционально-болевой стресс, напротив, вызывает у неадаптированных животных значительное, в 1, 5—4 раза снижение концентрации β -эндорфинов в коре, стриатуме, мозжечке. У адаптированных животных такой же стресс, напротив, никакого существенного изменения концентрации β -эндорфинов в структурах головного мозга не вызывает. Для понимания этой замечательной способности мозга адаптированных животных сохранять нормаль- Таблица 25. Содержание β -эндорфина в мозге и надпочечниках при эмоционально-болевом стрессе (M+m)
ную концентрацию β -эндорфинов, несмотря на стресс, следует обратить внимание на последнюю графу таблицы, где представлены данные о концентрации β -эндорфина в надпочечниках. Видно, что адаптация к периодической высотной гипоксии, продолжающаяся в наших опытах 1, 5 мес, приводит к увеличению концентрации β -эндорфинов в надпочечниках более чем в 4 раза. При стрессе мобилизация этого большого дополнительного резерва β -эндорфина оказывается еще более полной, чем у неадаптированных животных. В итоге не трудно подсчитать, что стрессорный выброс β -эндорфинов из надпочечников адаптированных животных более чем на порядок выше, чем в контроле. Поскольку известно, что β -эндорфины ограничивают возбуждение адренергических структур головного мозга, играющих важную роль в механизме аритмий и фибрилляции сердца, а также действуют подобно морфию, как анальгетики, то не трудно предположить, что показанное нами при адаптации к гипоксии увеличение мощности опиоидной системы является одним из факторов, играющих роль в предупреждении фибрилляции сердца при острой ишемии. Представляет интерес сопоставление данных об увеличении резерва β -эндорфина в надпочечниках при адаптации к гипоксии с результатами наших ранее выполненных работ [Меерсон Ф. 3., Пшенникова М. Г., Матлина Э. Ш., 1977; Пшенникова М. Г., 1980], в которых было показано, что при адаптации к этому фактору в надпочечниках закономерно увеличивается концентрация норадреналина и адреналина, а при стрессе на фоне такой адаптации многократно возрастает выброс этих катехоламинов из надпочечников. Эта корреляция между опиоидным пептидом и норадреналином является не только качественной, но и количественной. Так, адаптация увеличивает стрессорный выброс р-эндорфина с 0, 44 до 4, 49 фмоль/мг, а стрессорный выброс норадреналина с 40 мкг до 400 мкг/г надпочечника, таким образом, выброс норадреналина и ограничивающего его эффекты опиоидного пептида оказался увеличенным у адаптированных животных в одинаковой степени — на один порядок. Это наблюдение соответствует известному факту, что в надпочечниках катехоламины и опиоидные пептиды синтезируются в одних и тех же гранулах, и нашему представлению о прочном сопряжении стресс-реализующих и стресслимитирующих систем. В целом изложенное свидетельствует, что тормозные регуляторные системы могут играть существенную роль в антиаритмическом эффекте адаптации к гипоксии. Вместе с тем очевидно, что в этом эффекте играют роль адаптационные изменения структуры и функции сердца: увеличение васкуляризации миокарда и эффективности систем его энергообеспечения. Нами совместно с М. Е. Евсевьевой и Е. Е. Устиновой было проведено морфометрическое исследование, направленное на определение относительного объема рубца при постинфарктном кардиосклерозе, соотношения форменных элементов в рубце и васкуляризации прилегающей к рубцу зоны миокарда. Для этого гистологические препараты окрашивали гематоксилин-эозином и по Ван-Гизону. Интенсивность васкуляризации пограничной зоны инфаркта миокарда и количественное соотношение форменных элементов в нем определяли с помощью стереометрических сеток [Автандилов Г. Г., Салбиев К. Д., 1974; Семенова Л. А. и др., 1985]. Для определения размеров рубца были использованы серийные гистотопографические срезы сердца, сделанные через каждые 2 мм ткани начиная от верхушки. В основу определения относительного объема рубцовой ткани был положен принцип Delesse, согласно которому поверхности структур относятся как их объемы [Непомнящих Л. М., 1981]. Результаты этих исследований представлены в табл. 26 и свидетельствуют, что рассмотренный выше антиаритмический эффект адаптации к гипоксии у животных с постинфарктным кардиосклерозом сопровождается уменьшением относительного объема рубцовой ткани в миокарде примерно на 1/3; при этом рубец оказался более плотным, удельный объем коллагеновых волокон в нем был увеличен, а удельный объем отечной стромы и всех без исключения форменных элементов уменьшен, т. е. под влиянием адаптации постинфарктный рубец уменьшился и стал более плотным. Одновременно наблюдалось увеличение васкуляризации прилегающей к рубцу зоны миокарда: объемная плотность сосудов в этой зоне оказалась увеличенной на 1/3. Таким образом, прямой кардиопротекторный эффект адаптации к гипоксии несомненно может играть роль в ее терапевтическом действии при постинфарктном кардиосклерозе. Другим выражением прямого кардиопротекторного действия адаптации является установленное в последнее время в нашей лаборатории повышение резистентности изолированного предсер- Таблица 26. Соотношение гистологических структур в постинфарктном рубце и прилегающей к нему зоне миокарда (в %)
дня к аритмогенному действию такого индуктора ПОЛ, как Н2О2. В этих экспериментах, выполненных В. А. Салтыковой и Е. Е. Устиновой, Н2О2 вводили в рабочую камеру, где спонтанно сокращались изолированные правые предсердия крыс. В контроле реакция предсердия на действие Н2О2 проходит через 3 фазы. В 1-й фазе наблюдается выраженный хроно- и инотропный эффект, а также снижение напряжения покоя, т. е. расслабляющий эффект. Во 2-й фазе развивается выраженная брадикардия; наконец, 3-я фаза характеризуется брадиаритмией и остановкой сердца. Реакция предсердия адаптированных к гипоксии животных осуществлялась через те же фазы, однако брадикардия и брадиаритмия во 2-й и 3-й фазах была выражена меньше, и во многих случаях остановка сердца не возникала. Кривые на рис. 22 количественно характеризуют результат эксперимента, в котором была сопоставлена реакция предсердий 20 контрольных и 20 адаптированных к гипоксии крыс на добавление Н2О2. Видно, что в контроле отдельные предсердия остановились ужена 1—2-й минуте, у адаптированных это произошло на 3—4-й минуте; в дальнейшем почти все предсердия контрольных животных прекратили сокращение, а более половины предсердий адаптированных животных продолжали сокращаться. В итоге на 20-й минуте после начала индукции ПОЛ сокращалось только 2 предсердия контрольных и 12 предсердий адаптированных животных. Эти данные свидетельствуют, что адаптация к гипоксии повышает резистентность автоматизма сердца к аритмогенному действию индукторов ПОЛ. Значимость этого факта определяется тем, что катехоламины, повреждающие сердце при стрессе и острой ишемии, также являются индукторами ПОЛ и вместе с тем обладают выраженным аритмогенным эффектом. Также существенно, что выполненные ранее биохимические ис-
следования показали отсутствие при гипоксии какой-либо активации антиоксидантных ферментных систем или увеличения содержания витамина Е [Меерсон Ф. 3., Абдикалиев Н. А. и др., 1981]. Таким образом, антиаритмический эффект адаптации к гипоксии, реализующейся на уровне сердца, должен зависеть от каких-то иных факторов, например от изменения жирно-кислотного, фосфолипидного состава или структурной перестройки на уровне липидного бислоя мембран. В целом полученные результаты свидетельствуют, что кардиопротекторный и, в частности, антиаритмический эффект адаптации к гипоксии может реализоваться как на уровне нейрогуморальной регуляции, так и на уровне самого сердца. * * * Рассмотренные выше данные о защитном эффекте адаптации к стрессорным ситуациям и другим факторам при аритмиях и фибрилляции сердца являются одним из наиболее важных в настоящее время доказательств перспективности адаптации к стрессорным ситуациям как фактора терапии и профилактики. В комплексе с данными, представленными в предудущих главах, это позволяет кратко резюмировать современные представления о развитии и механизме адаптации к стрессорным ситуациям, подобно тому, как это было сделано для адаптации к физическим нагрузкам и гипоксии. Прежде всего следует констатировать, что эта адаптация может реализоваться в двух формах: 1) она может развиваться как адаптация, которая является звеном или компонентом более широкого явления, а именно адаптации к физическим факторам или сложным биологическим и социальным ситуациям окружающей среды. Например, к большим физическим нагрузкам, значительной высоте, холоду, соревновательным или опасным для жизни ситуациям, в которых многократная стрессреакция составляет необходимое звено образования специальных навыков или специфической устойчивости к совершенно конкретным факторам окружающей среды; в этом варианте процесса описанное выше увеличение мощности стресс-реализующих и стресс-лимитирующих систем сочетается с формированием системного структурного следа, на который опирается специфическая устойчивость к определенному физическому фактору или навык к специальной деятельности; 2) адаптация к стрессорным ситуациям, из которых нет реального выхода, т. е. процесс, обеспечивающий только выживание или «незаболевание» в течение определенного времени, процесс, детерминированный экспериментальными, природными или социальными условиями, который мы так же, как многие другие исследователи, воспроизводили в своих экспериментах в форме иммобилизационного или эмоционально-болевого стресса. Эта адаптация обеспечивается формированием достаточно своеобразного системного структурного следа, составляющего основу устойчивости к стрессорным, т. е. до поры до времени безвыходным ситуациям. Содержание предыдущих глав и данные литературы позволяют констатировать, что формирование такой адаптации характеризуется теми же общими закономерностями что и формирование адаптации к другим факторам среды, и вместе с тем имеет важные отличительные черты. Общей закономерностью, по-видимому, является то, что адаптация к собственно стрессорным ситуациям проходит через те же характерные стадии, что и адаптация к любому другому фактору окружающей среды. Действительно здесь можно наблюдать «аварийную» стадию, характеризующуюся большой стресс-реакцией, наличием повреждений внутренних органов и т. д., переходную стадию, когда координированное увеличение мощности стресс-реализующей и стресслимитирующих систем, обусловленное активацией биосинтеза нуклеиновых кислот и белков-ферментов в клетках этих регуляторных систем, ограничивает стресс, стрессорные повреждения и восстанавливает резерв стресс-реализующей системы. Далее развивается стадия устойчивой адаптации, когда высокая мощность стресс-лимитирующих модуляторных систем подавляет стресс-реакцию и устраняет повреждения. Наконец, необходимо постулировать четвертую стадию — стадию «изнашивания», которая характеризуется истощением стресс-лимитирующих систем, возобновлением стрессорных повреждений и развитием болезней, которые хорошо известны из литературы, рассматривающей повреждающие эффекты так называемого хронического стресса. Вторая черта адаптации к стрессорным ситуациям заключается в том, что основой ее является разветвленный структурный «след», т. е. комплекс структурных изменений в стресс-реализующей и стресс-лимитирующих системах, которые были рассмотрены выше. Разумеется, структурная основа этой адаптации, т. е. молекулярные и морфологические изменения в указанных системах, еще недостаточно ясны и являются предметом дальнейших исследований. Наконец, третьей общей закономерностью, присущей адаптации к стрессорным ситуациям, являются ее перекрестные эффекты, как положительные, составляющие основу экспериментальной профилактики и терапии, так и отрицательные, выражением которых является «цена» адаптации. Главной отличительной чертой адаптации к стрессорным ситуациям является то, что она обеспечивается преимущественно интенсивной деятельностью определенных регуляторных механизмов при ограниченном включении в реакцию исполнительных эффекторных органов. Соответственно системный структурный «след» этой адаптации охватывает главным образом стресс-реализующие и стресс-лимитирующие центральные и периферические системы, т. е. локализован на регуляторном уровне. Поскольку регуляторные системы организма тесно связаны между собой, такой конструкции системного структурного «следа» данной адаптации соответствует необычайно широкий спектр ее перекрестных эффектов — от цитопротекторного на уровне желудка, антиаритмического на уровне сердца до антидепрессивного на уровне поведения. Вместе с тем такой спектр перекрестных эффектов, в высокой степени предопределяющий способность к выживанию в реальных условиях окружающей среды, не предусматривает при данной адаптации формирования каких-либо специальных навыков, присущих другим, более специализированным реакциям приспособления и обладает отрицательными перекрестными эффектами (например, подавление функции половых желез, стрессорные заболевания и т. д.). Это означает, что на современном этапе развития проблемы при планировании и организации адаптации к определенным факторам окружающей среды целесообразно первоначальное освоение сложных видов деятельности и лишь затем дальнейшая адаптация к дозированным стрессорным ситуациям постепенно нарастающей интенсивности. В плане нашего изложения существенным является важный для медицины аспект адаптации к стрессорным ситуациям — возможность получить защитные эффекты этой адаптации, не применяя ее самой, а используя естественные метаболиты стресс-лимитирующих систем, их синтетические аналоги и, наконец, активаторы этих систем. В следующей главе будут рассмотрены результаты исследований, в которых реализован такой подход применительно к аритмиям и фибрилляции сердца. Это связано с тем, что, несмотря на большие достижения в области создания антиаритмических препаратов [Каверина Н. В. и др., 1978; Самвелян В. М. и др., 1978; Розенштраух Л. В. и др., 1980] и тактики их применения (Дощицин В. Л., Меркулова И. Н., 1976; Янушкевичус 3. И. и др., 1976; Сметнев А. С., 1985], проблема терапии аритмий и профилактики внезапной смерти продолжает оставаться одной из важных в современной кардиологии.
|