Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Активация и ингибирование ферментов. Единицы ферментативной активности.






Активация ферментов это один из механизмов, с помощью которого клетки меняют свой метаболизм. Как можно изменить работу этих мощных биокатализаторов? Существует 2 типа регуляции работы ферментов

1) СРОЧНОЕ РЕГУЛИРОВАНИЕ. Изменение активности имеющихся в клетках ферментов. Реализуется быстро.

2) ЗАМЕДЛЕННАЯ РЕГУЛЯЦИЯ. Реализуется за счет изменения концентрации самих ферментов в клетках. Изменение концентрации ферментов в клетках достигается 2 путями

1 или за счет усиления синтеза 2 или за счет изменения распада.

Механизмы срочной регуляции. Регуляция с изменением активности имеющихся в клетках ферментов. В процессах срочного регулирования важнейшая роль, принадлежит следующим 5 механизмам. 1 Образование ферментов из предшественников.2 Обратимое ингибирование конкурентного типа. З. Аллостерическое ингибирование или активация с участием механизма положительной или отрицательной обратной связи. 4. Ковалентная модификация

ферментов 5. Белок-белковое взаимодействие.

Краткая характеристика 1 Целый ряд ферментов в организме человека синтезируется в виде своих неактивных предшественников -проферментов. Далее они в таком виде они могут находиться в клетках или поступают в биологические жидкости. Обычно проферменты имеют более длинные полипептидные цепи отсюда у них нет активного центра и они не могут работать как ферменты. В случае необходимости под действием специфических ферментов, а иногда других агентов, путем ограниченного протиолиза от профермента отщепляется различной длины полипептидные цепи и формируется активный фермент. В виде проферментов в крови циркулирует целый ряд факторов свертывания крови. Почему кровь не свертывается? Поскольку большое количество работающих здесь компонентов. Например, такие как протромбин. Они активируются при повреждении сосудов и обеспечивает свертывание крови. Активация идет по каскадному механизму.

3. Наиболее частый механизм регуляции. Причем в клетках встречаются механизмы и активации и ингибирования. Если бы клетка не могла бы сама определить, сколько произвести того или иного продукта я имею ввиду метаболического пути и ждала бы команды сверху, то очевидно бы погибла. В клетке нет отсека для хранения. Это механизм, с помощью которого клетка узнает, когда данного вещества произведено достаточно. Перекрест метаболических путей достаточно сбалансирован и одно и то же соединение может использоваться во многих ферментативных реакциях.

Так регулируется синтез холестерина, пуриновых и пиримидиновых метаболитов и др. метаболические пути. Механизм аллостерической активации очень часто встречается как активация предшественникам. Типичным примером может быть эффект который наблюдается у бактерий синтезирующих изолейцин из треонина. тре Е1→ а Е2→ в Е3→ сЕ4→ dЕ5→ иле. В этом многоступенчатом метаболическом процессе участвуют 5 ферментов. В этой системе треонин является аллостерическим активатором первого фермента метаболического пути. Не включается синтез пока в клетки не накапливается треонин. Пока он используется для различных процессов превращение не идет как только так сразу. Аллостер. активация широко используется и при активировании различных процессов которые обеспечивают клетки энергии. Например, АДФ, АМФ, фосфорная кислота и пирофосфат увеличивают активность целого ряда ферментов, работа которых обеспечивает клетки в виде энергии АТФ. Как прекращается синтез? Оказывается, что в целом ряду метаболических процессов конечный продукт данного метаболического пути действует на первый или второй аллостерический фермент инактивируя его работу. Если данного вещества синтезировано достаточное количество. В целом аллостерическая активация и ингибирование представляют собой высокоэффективные механизмы поддержания в клетках необходимых веществ на оптимальном уровне.

Активаторы повышают, т.е. активируют каталитич. активность ферментов. В одних случаях активатор вытесняет ингибитор или отщепляет его от фермента. Например, соляная кислота, пепсиноген HCl→ пепсин → ингибитор 1). Отщепляет от пепсиногена ингибитор в рез-те этого неактив. фермент - пепсиноген превращ. в активный фермент - пепсин, эффективно расщепл. белки в составе желудочною сока. Итак, первый механизм это вытеснение ингибитора или отщепление его от фермента. Например, цистеин может активировать ряд ферментов, отщепляя от него соли тяжелых металлов, например серебра 2). Активатор может связываться с субстратом, обеспечивая более эффективное взаимодействие субстрата с активным центром. Такова вероятно роль ионов магния во многих реакциях идущих с участием АТФ. Считают, что магниевая соль АТФ является истинным субстратом для многих ферментов. Отсюда и активирующий эффект магния оказывающий влияние практически на все ферменты катализирующие реакции с использованием АТФ. Эти ферменты называют синтетазы или лиазы. Их достаточно много в наших клетках. 3).Активатор может способствовать присоединению кофактора к апоферменту. Холофермент - сложный белок может работать только когда имеется апофермент и кофактор. Так вот активатор, иногда взаимодействуя апофермента с кофактором затруднено, некоторые активаторы обеспечивают такое взаимодействие, а значит образование активной формы - соединение апофермента с кофактором 4) Активаторы иногда способствуют формированию каталитически активной пространственной структуры фермента. Напр., такое действие оказывают ионы Са на фермент амилазу. Итак, активаторы способствуют формированию каталитически активной пространственной структуры фермента, т.е. меняют ее конформацию до своеобразной нужной пространственной конформации при которой комплементарность между активным центром и связанным субстратом резко увеличивается. Без активатора связывание таким образом естественно крайне затруднено 5) Активация может быть аллостерической, т.е. идти за счет присоединения к аллостерич. центру фермента положит. алостерич. модулятора. Его наз. активатором. Это присоединение сопровожд. изменением конформации не только в месте связывания модулятора с аллостернч. центром, но захватывает конформационная волна и актив. центр, причем изменение актив. центра оказ. благоприятным для эффективности катализа. Отсюда аллостерических модуляторов с активирующим эффектом достаточно много. Это различные нуклеотиды, например НАД, НАДФ. Активаторами аллостерическими может являться фосфорная кислота, АТФ, АДФ и др. Эти основные 5 механизмов являются практически механизмами, расшифровывающими действия активаторов на ферменты. Ингибиторы. Это вещества, снижающие вплоть до полного прекращения каталитическую активность ферментов. Оказ. в качестве ингибиторов могут выступать самые разнообраз. вещ-ва от самых простых (ионы металлов) до высокомолекулярных соединений типа белков. Сущ. различные варианты классификации или подразделение ингибирования.. Наиболее часто принято ингибирование делить на обратимое и необратимое. Необратимое встречается реже. При нем происх. или разрушение пространст. структуры фермента в связи с этим фермент не может восстановить срок первоначал. активность. Разрушение пространств. структуры фермента, например денатурация, естественно что необратимыми например ингибиторами явл. концентр. кислоты, щелочи поскольку они вызывают серьезные денатурации при этом наблюд. необратимое изменение фермента в месте длительного контакта этих веществ с ферментами. Наиболее часта причина это образование недиссоциир. комплекса. Энзим - ингибиторного комплекса. Е + J → ЕJ. Обратное восстановление энзима невозможно. Пример йодацетат. Явл. необратимыми ингибиторами тиоловых ферментов, т.е. ферментов, в актив. центре кот.х в катализе приним. участие сульгидрильные группы. ДФФ диизопропил фторфосфат тоже явл. необрат. ингибитором ферментов активность которых зависит от гидроксильной группы серина - сериновые ферменты Трипсин - расщепляет белки, фосфорилаза - расщепляет гликоген, холиностераза - расщепляет ацетилхолин (медиатор парасимпатической нервной системы. В большинстве своем необратимые ингибиторы являются сильными ядами. Связано с тем, что дезорганизация работы ферментов, происходящих под действием этих ингибиторов, несомненно, сопровождается резким нарушением обмена веществ. При обратимом ингибировании образовавшийся энзим-ингибиторный комплекс нестойкий и поэтому способен диссоциировать на свободный энзим и ингибитор. Е + J → ← EJ. Различ. 2 вида обратим. ингибирования 1) Конкурентное 2) Не конкурентное.

 

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал