![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Квантовые числа электронов ⇐ ПредыдущаяСтр 3 из 3
Состояние каждого электрона в атоме обычно описывают с помощью четырех квантовых чисел: главного (n), орбитального (l), магнитного (m) и спинового (s). Первые три характеризуют движение электрона в пространстве, а четвертое - вокруг собственной оси. Главное квантовое число (n). Определяет энергетический уровень электрона, удаленность уровня от ядра, размер электронного облака. Принимает целые значения (n = 1, 2, 3...) и соответствует номеру периода. Из периодической системы для любого элемента по номеру периода можно определить число энергетических уровней атома и какой энергетический уровень является Орбитальное квантовое число (l) характеризует геометрическую форму орбитали. Принимает значение целых чисел от 0 до (n - 1). Независимо от номера энергетического уровня, каждому значению орбитального квантового числа соответствует орбиталь особой формы. Набор орбиталей с одинаковыми значениями n называется энергетическим уровнем, c одинаковыми n и l - подур Магнитное квантовое число (m) характеризует положение электронной орбитали в пространстве и принимает целочисленные значения от -I до +I, включая 0. Это означает, что для каждой формы орбитали существует (2l + 1) энергетически равноценных ориентации в пространстве. Для s- орбитали (l = 0) такое положение одно и соответствует m = 0. Сфера не может иметь разные ориентации в пространстве. Для p- орбитали (l = 1) - три равноценные ориентации в пространстве (2l + 1 = 3): m = -1, 0, +1. Для d- орбитали (l = 2) - пять равноценных ориентаций в пространстве (2l + 1 = 5): m = -2, -1, 0, +1, +2. Спиновое квантовое число (s) характеризует магнитный момент, возникающий при вращении электрона вокруг своей оси. Принимает только два значения +1/2 и –1/2 соответствующие
10. Периодический закон. Периодическая система химических элементов. Периодичность изменения радиусов, энергии ионизации, энергии сродства к электрону. Электроотрицгельность.
На основе Периодического закона Д.И. Менделеев создал Периодическую систему химических элементов. В периодах орбитальные атомные радиусы по мере увеличения заряда ядра Z в общем монотонно уменьшаются из-за роста степени взаимодействия внешних электронов с ядром. В подгруппах радиусы в основном увеличиваются из-за возрастания числа электронных оболочек. Энергией ионизации атома I называется количество энергии, необходимое для отрыва электрона от невозбужденного атома или иона. Энергия ионизации I выражается в кДж∙ моль–1 или эВ∙ атом–1. Значение I в электронвольтах численно равно потенциалу ионизации, выраженному в вольтах, поскольку E = e-·I. Э+ – e– = Э+, Δ H = I1 – первый потенциал ионизации; Э – e– = Э2+, Δ H = I2 – второй потенциал ионизации и т.д. I1 < I2 < I3 < I4... Энергия ионизации определяет характер и прочность химической связи и восстановительные свойства элементов. Энергия ионизации изменяется периодически по мере заполнения электронами оболочек атомов (рис. 2.4). I1 максимален у элементов с полностью заполненными валентными оболочками (у благородных газов), при переходе к следующему периоду I1 резко понижается – он минимален у щелочных металлов. энергия сродства к электрону – энергия, выделяющаяся при присоединении электрона к нейтральному атому. Чем больше электронное сродство, тем более сильным окислителем является данный элемент. ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ, величина, характеризующая способность атома к поляризации ковалентных связей. Электроотрицательность - это способность атомов химического элемента оттягивать к себе общие электронные пары, участвующие в образовании химической связи.
Элементы, стоящие левее, будут оттягивать общие электроны от элементов стоящих правее.
II. Химическая связь и ее основные характеристики. Типы химической связи. Ковалентная связь и механизмы ее образования. Полярная связь. Дипольный момент и полярность молекул. Механизмы образования ковалентной связи, а- и л- связи. Кратность связи. Основные характеристики химической связи: Энергия связи (ЕСВ) – минимальная энергия, необходимая для разрушения связи. Измеряется в электронвольтах (эВ) для одной связи или в кДж/моль для одного моля связей. Энергия связи является характеристикой прочности связи – чем выше энергия связи, тем прочнее связь. Длина связи (LСВ) – расстояние между ядрами связанных атомов. Измеряется в нанометрах (нм) или в ангстремах (А). Чем короче связь, тем она, как правило, прочнее.
КОВАЛЕНТНАЯ СВЯЗЬ. Ковалентная связь образуется за счёт общих электронных пар, возникающих в оболочках связываемых атомов.
σ - связь значительно прочнее π -связи, причём π -связь может быть только с σ -связью, За счёт этой связи образуются двойные и тройные кратные связи. Полярные ковалентные связи образуются между атомами с разной электроотрицательностью.
12. Свойства ковалентной связи. Валентные возможности атомов. Гибридизация атомных орбиталей (основные типы гибридизации с примерами). Геометрия молекул. Характерные свойства ковалентной связи – направленность, насыщаемость, полярность, поляризуемость – определяют химические и физические свойства органических соединений. Направленность связи обусловливает молекулярное строение органических веществ и геометрическую форму их молекул. Углы между двумя связями называют валентными. Насыщаемость – способность атомов образовывать ограниченное число ковалентных связей. Количество связей, образуемых атомом, ограничено числом его внешних атомных орбиталей. Полярность связи обусловлена неравномерным распределением электронной плотности вследствие различий в электроотрицательностях атомов. По этому признаку ковалентные связи подразделяются на неполярные и полярные. Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов. Электроны тем подвижнее, чем дальше они находятся от ядер. Полярность и поляризуемость ковалентных связей определяют реакционную способность молекул по отношению к полярным реагентам. Валентные возможности атомов определяются не только числом неспаренных электронов, но и числом неподеленных электронных пар, способных переходить на свободные ор-битали атомов другого элемента. Поскольку валентные возможности атомов ограничены, важнейшим свойством ковалентной связи является насыщаемость химических сил сродства. За счет донорно-акцепторного механизма увеличиваются валентные возможности атомов. В соединениях NH3 и BF3 азот и бор трехвалентны, в соединении H3NBF3 азот и бор четырехвалентны. Таким образом, валентность атомов зависит не только от количества неспаренных электронов, но и от наличия вакантных орбиталей и неподеленных электронных пар. Из общего количества электронных пар в образовании связи обычно участвует не больше одной. В таблице ниже представлена краткая характеристика всех типов гибридизации с участием s -, p - и d -орбиталей
13. Ионная связь. Механизм образования ионной связи. Отличия ионной связи от ковалентной. Чисто ионной связью называется химически связанное состояние атомов, при котором устойчивое электронное окружение достигается путём полного перехода общей электронной плотности к атому более электроотрицательного элемента. Кулоновские силы притяжения, возникающие при взаимодействии заряженных ионов, сильные и действуют одинаково во всех направлениях. В результате этого расположение ионов упорядочивается в пространстве определенным образом, образуя ионную кристаллическую решётку. Вещества с ионной КР при обычных условиях находятся в кристаллическом состоянии, они имеют высокие температуры плавления и кипения.
Межмолекулярное взаимодействие имеет электростатическую природу. Предположение о его существовании было впервые использовано Я.Д. Ван-дер-Ваальсом (1873) для объяснения свойств реальных газов и жидкостей. В наиболее широком смысле под ним можно понимать такие взаимодействия между любыми частицами (молекулами, атомами, ионами), при которых не происходит образования химических, т. е. ионных, ковалентных или металлических связей. Иными словами, эти взаимодействия существенно слабее ковалентных и не приводят к существенной перестройке электронного строения взаимодействующих частиц. Агрега́ тное состоя́ ние — состояние вещества, характеризующееся определёнными качественными свойствами: способностью или неспособностью сохранять объём и форму, наличием или отсутствием дальнего и ближнего порядка и другими. Изменение агрегатного состояния может сопровождаться скачкообразным изменением свободной энергии, энтропии, плотности и других основных физических свойств.[1]. Выделяют три основных агрегатных состояния: твёрдое тело, жидкость и газ. Иногда не совсем корректно к агрегатным состояниям причисляют плазму. Существуют и другие агрегатные состояния, например, жидкие кристаллы или конденсат Бозе — Эйнштейна. Изменения агрегатного состояния это термодинамические процессы, называемые фазовыми переходами. Выделяют следующие их разновидности: из твёрдого в жидкое — плавление; из жидкого в газообразное — испарение и кипение; из твёрдого в газообразное — сублимация; из газообразного в жидкое или твёрдое — конденсация; из жидкого в твёрдое — кристаллизация. Отличительной особенностью является отсутствие резкой границы перехода к плазменному состоянию. Водородная связь - это своеобразная химическая связь. Она может быть межмолекулярной и внутримолекулярной. Межмолекулярная водородная связь возникает между молекулами, в состав которых входят водород и сильно электроотрицательный злемент - фтор, кислород, азот, реже хлор, сера. Поскольку в такой молекуле общая электронная пара сильно смещена от водорода к атому электроотрицательного элемента, а положительный заряд водорода сконцентрирован в малом объеме, то протон взаимодействует с неподеленной электронной парой другого атома или иона, обобществляя ее. В результате образуется вторая, более слабая связь, получившая название водородной. Обычно водородную связь обозначают точками и этим указывают, что она намного слабее ковалентной связи (примерно в 15-20 раз). Тем не менее она ответственна за ассоциацию молекул. Например, образование димеров (в жидком состоянии они наиболее устойчивы) воды и уксусной кислоты можно представить схемами: Как видно из этих примеров, посредством водородной связи объединены две молекулы воды, а в случае уксусной кислоты - две молекулы кислоты с образованием циклической структуры. Водородная связь оказывает влияние на свойства многих веществ. Так, благодаря водородной связи фтороводород в обычных условиях существует в жидком состоянии (ниже 19, 5оС) и содержит молекулы состава от Н2F2 до Н6F6 Наличием водородных связей объясняется более высокая температура кипения воды (100оС) по сравнению с водородными соединениями элементов подгруппы кислорода (Н2S, Н2Sе, Н2Те). В случае воды надо затратить дополнительную энергию на разрушение водородных связей. Особенно распространены водородные связи в молекулах белков, нуклеиновых кислот и других биологически важных соединений, а потому эти связи играют важную роль в химии процессов жизнедеятельности.
15. Растворы. Теории образования растворов. Способы выражения концентрации растворов. Существует две основные теории образования растворов (истинных). 1. Химическая теория образования растворов, сформулированная Дмитрием Ивановичем Менделеевым, по которой между растворителем и растворенным веществом происходят химические взаимодействия (химические реакции) с образованием особой группы веществ: сольватов, гидратов и кристаллогидратов. 2. Физическая теория образования растворов, которая рассматривает инертные растворы, где не происходят вышеуказанные взаимодействия Массовая доля растворённого вещества w(B) - это безразмерная величина, равная отношению массы растворённого вещества к общей массе раствора m: w(B)= m(B) / m
Массовую долю растворённого вещества w(B) обычно выражают в долях единицы или в процентах. Например, массовая доля растворённого вещества – CaCl2 в воде равна 0, 06 или 6%. Это означает, что в растворе хлорида кальция массой 100 г содержится хлорид кальция массой 6 г и вода массой 94 г. Молярная концентрация C(B) показывает, сколько моль растворённого вещества содержится в 1 литре раствора. C(B) = n(B) / V = m(B) / (M(B) · V), где М(B) - молярная масса растворенного вещества г/моль. Молярная концентрация измеряется в моль/л и обозначается " M". Например, 2 M NaOH - двухмолярный раствор гидроксида натрия. Один литр такого раствора содержит 2 моль вещества или 80 г (M(NaOH) = 40 г/моль).
Аналогично диссоциируют и электролиты, молекулы которых образованы по типу полярной ковалентной связи (полярные молекулы). Вокруг каждой полярной молекулы вещества также ориентируются диполи воды, которые своими отрицательными полюсами притягиваются к положительному полюсу молекулы, а положительными полюсами - к отрицательному полюсу. В результате этого взаимодействия связующее электронное облако (электронная пара) полностью смещается к атому с большей электроотрицательностью, полярная молекула превращается в ионную и затем легко образуются гидратированные ионы. Диссоциация полярных молекул может быть полной или частичной. Таким образом, электролитами являются соединения с ионной или полярной связью - соли, кислоты и основания. И диссоциировать на ионы они могут в полярных растворителях. тепень диссоциации — величина, характеризующая состояние равновесия в реакции диссоциации в гомогенных (однородных) системах. Степень диссоциации α равна отношению числа диссоциированных молекул n к сумме n + N, где N — число недиссоциированных молекул. Часто α выражают в процентах. Степень диссоциации зависит как от природы растворённого электролита, так и от концентрации раствора.
Сильные электролиты — электролиты, степень диссоциации которых в растворах равна единице (то есть диссоциируют полностью) и не зависит от концентрации раствора. Сюда относятся подавляющее большинство солей, щелочей, а также некоторые кислоты (сильные кислоты, такие как: HCl, HBr, HI, HNO3). Слабые электролиты — степень диссоциации меньше единицы (то есть диссоциируют не полностью) и уменьшается с ростом концентрации. К ним относят воду, ряд кислот (слабые кислоты), основания p-, d-, и f- элементов. Константа диссоциации — вид константы равновесия, которая показывает склонность большого объекта диссоциировать (разделяться) обратимым образом на маленькие объекты, как например когда комплекс распадается на составляющие молекулы, или когда соль разделяется в водном растворе на ионы. Константа диссоциации обычно обозначается Kd и обратна константе ассоциации. В случае с солями, константу диссоциации иногда называют константой ионизации. В общей реакции где комплекс A x B y разбивается на x единиц A и y единиц B, константа диссоциации определяется так: где [A], [B] и [AxBy] — концентрации A, B и комплекса AxBy соответственно. Исходя из определения степени диссоциации, для электролита КА в реакции диссоциации [A− ] = [K+] = α ·c, [KA] = c — α ·c = c·(1 — α), где α — степени диссоциации электролита. Тогда: Это выражение называют законом разбавления Оствальда. При очень малых α (α < < 1) K=cα ² и
таким образом, при увеличении концентрации электролита степень диссоциации уменьшается, при уменьшении — возрастает. Подробнее связь константы диссоциации и степени диссоциации описана в статье Закон разбавления Оствальда.
19. Осмос. Осмотическое давление. Роль осмоса в биологических системах. Например, к яичной скорлупе с внутренней стороны прилегает полупроницаемая мембрана: она пропускает молекулы воды и задерживает молекулы сахара. Если такой мембраной разделить растворы сахара с концентрацией 5 и 10 % соответственно, то через нее в обоих направлениях будут проходить только молекулы воды. В результате в более разбавленном растворе концентрация сахара повысится, а в более концентрированном, наоборот, понизится. Когда концентрация сахара в обоих растворах станет одинаковой, наступит равновесие. Растворы, достигшие равновесия, называются изотоническими. Осмос, направленный внутрь ограниченного объёма жидкости, называется эндосмосом, наружу — экзосмосом. Перенос растворителя через мембрану обусловлен осмотическим давлением. Оно равно избыточному внешнему давлению, которое следует приложить со стороны раствора, чтобы прекратить процесс, то есть создать условия осмотического равновесия. Превышение избыточного давления над осмотическим может привести к обращению осмоса — обратной диффузии растворителя. В случаях, когда мембрана проницаема не только для растворителя, но и для некоторых растворённых веществ, перенос последних из раствора в растворитель позволяет осуществить диализ, применяемый как способ очистки полимеров и коллоидных систем от низкомолекулярных примесей, например электролитов.
Произведение растворимости (ПР, Ksp) — произведение концентрации ионов малорастворимого электролита в его насыщенном растворе при постоянной температуре и давлении. Произведение растворимости — величина постоянная. При постоянной температуре в насыщенных водных растворах малорастворимых электролитов устанавливается равновесие между твердым веществом и ионами, образующими это вещество. Например, в случае для CaCO3 это равновесие можно записать в виде: Константа этого равновесия рассчитывается по уравнению: В приближении идеального раствора с учетом того, что активность чистого компонента равна единице, уравнение упрощается до выражения: Константа равновесия такого процесса называется произведением растворимости. В общем виде, произведение растворимости для вещества с формулой AmBn, которое диссоциирует на m ионов An+ и n ионов Bm-, рассчитывается по уравнению: где [An+] и [Bm-] — равновесные молярные концентрации ионов, образующихся при электролитической диссоциации.
H2O ↔ H+ + OH¯ Экспериментально установлено, что произведение концентраций ионов H+ и OH¯ в воде и разбавленных водных растворах электролитов является величиной постоянной и называется ионным произведением воды (Kw) Kw = [H+] + [OH¯ ] = 10-14, [H+] = [OH¯ ] = 10-7 моль/л Для удобства условились выражать кислотность раствора как отрицательный логарифм концентрации водородных ионов. Эту величину называют водородным показателем и обозначают pH. pH = -lg[H+] Аналогично, отрицательный логарифм концентрации гидроксильных ионов обозначают pOH, однако, пользуются этим показателем значительно реже. pH + pOH = 14 В зависимости от соотношения концентраций ионов H+ и OH¯ различают три вида реакции среды: кислая среда: [H+] > [OH¯ ]; [H+] > 10-7 моль/л; pH < pOH; pH < 7; нейтральная среда: [H+] = [OH¯ ] = 10-7 моль/л; pH = pOH = 7; щелочная среда: [H+] < [OH¯ ]; [H+] < 10-7 моль/л; pH > pOH; pH > 7; Таким образом, значения pH всех водных растворов электролитов укладывается в шкалу pH от 0 до 14.
Различают обратимый и необратимый гидролиз солей[1]:
CO32− + H2O = HCO3− + OH−
Cu2+ + Н2О = CuOH+ + Н+
2Al3+ + 3S2− + 6Н2О = 2Al(OH)3(осадок) + ЗН2S(газ) Соль сильной кислоты и сильного основания не подвергается гидролизу, и раствор нейтрален. См. также Электролитическая диссоциация. арсенит цинка Zn(AsO2)2
24. Количественные характеристики гидролиза: степень и константа гидролиза. Определение рН растворов гидролизующихся солей.
|