![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Лабораторна робота № 1.04. Визначення модуля зсуву методом крутильних коливань
Вступ Модуль зсуву є однією з характерних пружних властивостей деформованих твердих тіл. Деформація тіла, тобто зміна його форми і розмірів, відбувається під дією прикладеної до неї зовнішньої сили. Якщо після припинення дії зовнішньої сили тіло приймає початкові розміри і форму, то така деформація називається пружною, а виникаючі між різними частинами деформованого тіла внутрішні сили – пружними силами. Для кожного реального тіла існує своя границя пружності, тобто та допустима гранична величина деформації, після припинення дії якої тіло, завдяки дії пружних сил, відновлює свої розміри і форму. При деформаціях вище границі пружності зміни форми тіла стають необоротними. Така деформація називається пластичною (залишковою).
Основними типами деформацій є деформації розтягу (стиску) і зсуву, так як деформацію любого іншого виду можна представити у вигляді суми цих двох деформацій. Зсувом називається така деформація тіла, при якій всі її плоскі шари, паралельні до площини, вздовж якої діє прикладена до тіла деформуюча сила Величина деформації зсуву характеризується тангенсом кута зсуву, який називається відносним зсувом. При пружних деформаціях кут
При невеликих значеннях тангенціального напруження залежність між
де Метод вимірювання В даній роботі метод визначення модуля зсуву оснований на вимірюваннях періоду коливань крутильного маятника, що складається з закріпленого в кронштейні зразка у вигляді циліндричного стержня, до якого закріплена горизонтальна хрестовина, навантажена чотирма однаковими вантажами (рис. 1.6). Крутильні коливання хрестовин здійснюються довкола вертикальної осі під дією моменту пружних сил, що виникає при закручуванні стержня на кут
де
При деформації кручення незакріплений переріз стержня під дією моменту зовнішніх сил повертається довкола осі стержня на кут
де
де
Моменти інерції крутильного маятника
де
З системи двох рівнянь знайдемо модуль кручення і, відповідно до формули (4), модуль зсуву:
|