Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Скачкообразное и мгновенное видообразование. Мгновенное видообразование
Мгновенное (квантовое) или скачкообразное (сальтация) видообразования наблюдается в результате мутации и сокращение сроков действия репродуктивных изолирующих механизмов. Примером такого видообразования является возникновение в течение одного поколения полиплоидов растений, которые имеют характеристики новых видов. Видообразования через полиплоидию известно и у животных, хотя в последних этот механизм видообразования очень редкий. Полиплоиды считают самостоятельными видами не только вследствие резкого отличия их от исходных видов, но и по той причине, что они репродуктивно изолированы от исходных видов. Мгновенное видообразования в свое время противопоставлялось Дарвиновском. Синтетическая теория эволюции сняла существующие противоречия между дарвинизмом и генетикой, допуская, кроме постепенной дивергентной эволюции, формы внезапного видообразования путем полиплоидии, гибридизации, крупных хромосомных мутаций. Некоторые близкие виды (обычно растения) отличаются кратным числом хромосом. Так, виды картофеля имеют хромосомные наборы п = 12, 24, 48, 72. Это дает основу предположить, что одним из путей видообразования является полиплоидия — удвоение, утроение и т.д. начального числа хромосом предкового вида. Такие процессы воспроизведен в эксперименте с помощью задержки расхождения хромосом в мейозе в результате действия колхицином. Полиплоиды, как правило, более жизнеспособны в экстремальных условиях (высокогорье, пустыни) и, видимо, могут вытеснять родительский вид на периферию ареала. К внезапному видообразования относится также гибридизация с последующим удвоением числа хромосом. Возможность гибридогенного происхождения видов допускал К. Линней и другие ботаники его поколения. Однако экспериментальные доказательства такой возможности и пути преодоления стерильности межвидовых гибридов были открыты лишь в 1920-1932 гг. Общеизвестны классические эксперименты по синтезу межродового гибрида между редькой и капустой, проведенные Г. Д. Карпеченко, и ресинтеза (воспроизведению видов с целью установления их происхождения) культурной сливы путем гибридизации терна и алычи, выполненные В. А. Рыбиным. Подобные гибридогенного виды описаны для ряда культурных и диких видов растений. Среди животных полиплоидия как форма видообразования играет заметно меньшую роль и встречается в некоторых червей и насекомых. В других групп животных большую роль играет хромосомное видообразования, основанной на процессах фиксации больших хромосомных мутаций, которые обеспечивают репродуктивную изоляцию детей от родительской формы. Таким образом, существуют различные пути видообразования. Ясно, что в случае крупных хромосомных перестроек, полиплоидии и гибридизации, когда практически сразу возникает репродуктивная изоляция, видообразование идет практически неожиданно. Конечно, вслед за становлением изоляции пойдет длительный отбор мелких мутаций, но принципиально начальный скачкообразный акт. Все пути и формы процесса видообразования приводят к многообразию видов в природе. · 20)Пути видообразования. (Аллопатрическое и Симпатрическое) Симпатрическое (экологическое) видообразование[править | править вики-текст] Связано с расхождением групп особей одного вида и обитающих на одном ареале по экологическим признакам. При этом особи с промежуточными характеристиками оказываются менее приспособленными. Расходящиеся группы формируют новые виды. Симпатрическое видообразование может протекать несколькими способами. Один из них — возникновение новых видов при быстром изменении кариотипа путём полиплоидизации. Известны группы близких видов, обычно растений, с кратным числом хромосом. Другой способ симпатрического видообразования — гибридизация с последующим удвоением числа хромосом. Сейчас известно немало видов, гибридогенное происхождение и характер генома которых может считаться экспериментально доказанным. Третий способ симпатрического видообразования — возникновение репродуктивной изоляции особей внутри первоначально единой популяции в результате фрагментации или слияния хромосом и других хромосомных перестроек. Этот способ распространён как у растений, так и у животных. Особенностью симпатрического пути видообразования является то, что он приводит к возникновению новых видов, всегда морфологически близких к исходному виду. Лишь в случае гибридогенного возникновения видов появляется новая видовая форма, отличная от каждой из родительских. Аллопатрическое (географическое) видообразование[править | править вики-текст] Вызывается разделением ареала вида на несколько изолированных частей. Возникновение географических преград (горных хребтов, морских проливов и пр.) приводит к возникновению изолятов — географически изолированных популяций. При этом на каждую такую часть отбор может действовать по-разному, а эффекты дрейфа генов и мутационного процесса будут явно отличаться. Тогда со временем в изолированных частях будут накапливаться новые генотипы и фенотипы. Особи в разных частях ранее единого ареала могут изменить свою экологическую нишу. При таких исторических процессах степень расхождения групп может достигнуть видового уровня. Согласно наиболее распространенным представлениям, новые виды могут появляться в условиях пространственной изоляции популяций, т. е. из популяций, занимающих разные географические ареалы. Теория географического видообразования создана К. Джорданом, Б. Реншем, Ф. Добжанским, Э. Майром. Это видообразование есть результат пространственной изоляции, значение которой первым подчеркнул М. Вагенер. Новые виды могут появляться в условиях пространственной изоляции популяций, т. е. из популяций, занимающих разные географические ареалы.Пространственная изоляция может возникать в ходе распространения вида по ареалу. На пике численности обычно усиливается миграция особей, и ареал вида расширяется. . 21) Популяционная биология. Популяционная биология (англ. Population biology) — раздел общей биологии, занимающийся комплексным (с общебиологических, демографических, экологических, генетических и других точек зрения) изучением популяций организмов, их изменения и взаимодействия, в частности, исследует популяционные аспекты экологии, эволюции, процессов воспроизводства, старения и смерти. Популяционная биология настолько широко использует методы популяционной динамики, что эти два термина часто рассматриваются как равнозначные, но популяционная биология более широкий раздел, который также включает экспериментальные исследования. Включает в качестве самостоятельных разделов популяционную генетику, популяционную экологию, микросистематику и т. п., а сама популяционная биология часто рассматривается как составная часть эволюционной биологии. Известен также популяционный метод исследования генетики человека. Он позволяет изучать распространение отдельных генов или хромосомных аномалий в человеческих популяциях. Для анализа генетической структуры популяции необходимо обследовать большую группу лиц, которая должна быть репрезентативной, то есть представительной, позволяющей судить о популяции в целом. Этот метод применяется при изучении различных форм наследственной патологии. · 22)Изолирующие механизмы. Географическая изоляция, экологическая изоляция, Репродуктивная изоляция. Географическая изоляция[править | править вики-текст] Географическая изоляция — обособление определенной популяции от других популяций того же вида каким-либо труднопреодолимым географическим препятствием. Подобная изоляция может возникнуть в результате изменения географических условий в пределах ареала вида или при расселении групп особей за пределы ареала, когда «популяции основателей» могут закрепиться в некоторых обособленных районах с благоприятными для них условиями внешней среды. Географическая изоляция — один из важных факторов видообразования, так как она препятствует скрещиванию и тем самым обмену генетической информацией между обособленными популяциями. Репродуктивная изоляция[править | править вики-текст] Основная статья: Репродуктивная изоляция Репродуктивная (биологическая) изоляция приводит к нарушению свободного скрещивания или образованию стерильного потомства. Классифицируют экологическую, этологическую, временную, анатомо-морфо-физиологическую и генетическую репродуктивную изоляцию. При этологическом характере репродуктивной изоляции для особей разных популяций снижается вероятность оплодотворения ввиду различий в образе жизни и поведения, например, у разных видов птиц отличаются ритуалы ухаживания и брачные песни. При экологическом характере — различаются, условия обитания живых организмов, например, популяции рыб нерестятся в разных местах. При временной изоляции отличаются сроки размножения. При анатомо-морфо-физиологической репродуктивной изоляции у живых организмов возникают различия в строении, размерах отдельных органов половой системы, или возникают различия в биохимических аспектах репродуктивной функции. При генетическом характере репродуктивной изоляции возникают несовместимые гаметы или появляются гибриды с пониженной жизнеспособностью, плодовитостью или стерильностью.[1] Перечисленные формы репродуктивной изоляции возникают независимо друг от друга и могут сочетаться в любых комбинациях. Однако именно генетическую изоляцию считают одной из самых важных форм репродуктивной изоляции, так как остальные формы репродуктивной изоляции при видообразовании, в конечном итоге, ведут именно к возникновению независимости генофондов двух популяций. Возникновению репродуктивной изоляции часто способствует длительная географическая изоляция. ЭКОЛОГИЧЕСКАЯ это: · прекращение под влиянием природной среды обмена генами между популяциями вследствие различныхсезонных или суточных ритмов в образе жизни и размножении, а также приспособления к различнымучасткам биотопа (в вертикальном и горизонтальном направлениях). Способность популяций жить на однойи той же территории определяется наличием соответствующих местообитаний и ниш, силой межвидовойконкуренции и соответствующими адаптациями. Если сосуществование популяций действительно имеетместо, то гибридизация между ними регулируется наличием местообитаний, пригодных для их гибридногопотомства. Преграда к обмену генов имеет экологическую природу. Экологическая изоляция представляетсобой универсальную черту, характерную для всех видов, но она не является отличительным видовымпризнаком. Экологическая изоляция существует также между экологическими расами и междусимпатрическими популяциями. Весьма возможно, что между географическими расами обычно естьнекоторая экологическая изоляция. Как правило, экологическая изоляция — следствие экологическиедифференциации симпатрический видов. Подобная дифференциация широко распространена ипроявляется во многих различных формах. Например, в Техасе (США) некоторые виды дуба растут наразных почвах: Quercus mohriапа встречается на известковой почве, Q. havardi на песчаной, Q. grisea навыходах магматических пород. Другой пример: виды дрозофилы, обитающие в одном и том же районеКалифорнии (США) или Бразилии, питаются разными видами дрожжей. 23) Инбридинг ИНБРИДИНГ (близкородственное скрещивание), скрещивание организмов, близких по степени родства. Так как такие организмы всегда имеют общих предков, высока вероятность, что они получили от них одинаковыеаллельные гены. Поэтому при инбридинге, в отличие от аутбридинга, возрастает вероятность «встречи» одинаковых аллелей в гомозиготе. Чем ближе степень родства у родителей, тем выше степень гомозиготности у их потомков. Наивысшая степень инбридинга у самоопыляющихся растений и у самооплодотворяющихсяживотных. Одно из важных последствий инбридинга – повышение частоты проявления вредных рецессивных аллелей. Обычно такие аллели находятся в популяции в гетерозиготном состоянии и их проявление подавлено нормальным доминантным аллелем. Переход вредных аллелей в гомозиготное состояние ухудшает приспособленность потомства, снижает его плодовитость, жизнеспособность и устойчивость к болезням. Происходит вырождение потомства, или инбредная депрессия. Однако в природных популяцияхсамоопыляющихся растений инбредная депрессия не возникает, несмотря на высокую степень гомозиготности: естественный отбор выбраковывает вредные рецессивные аллели по мере их перехода в гомозиготное состояние. В селекции для создания пород и сортов, у которых были бы максимально выражены хозяйственно ценные признаки, проводят в каждом поколении искусственный отбор лучших родителей. При этом для получения однородных линий организмов с устойчивыми желаемыми признаками систематически повышают гомозиготность путём инбридинга. Чтобы избежать его вредных последствий, скрещивают организмы из различных (независимых) инбредных линий. Таким образом удаётся сохранить гомозиготность по желаемым признакам, а вредные аллели перевести в гетерозиготное состояние. Кроме того, таким способом получают эффект, обратный инбредной депрессии, – гетерозис, широко используемый в селекции. Близкородственные (кровосмесительные) браки у человека также часто приводят к нежелательным последствиям. Так, частота появления новорождённых с различными наследственными нарушениями в случае браков между двоюродными братьями и сёстрами в среднем в два раза выше, чем при неродственных браках. Поэтому во многих странах браки между близкими родственниками за-прещены законами и обычаями. · 24) Критерии вида. Вид – это совокупность особей, сходных по критериям вида до такой степени, что они могут в естественных условиях скрещиваться и давать плодовитое потомство. Плодовитое потомство – то, которое само может размножаться. Пример неплодовитого потомства – мул (гибрид осла и лошади), он бесплоден. Критерии вида – это признаки, по которым сравнивают 2 организма, чтобы определить, относятся они к одному виду или к разным. · Морфологический – внутреннее и внешнее строение. · Физиолого-биохимический – как работают органы и клетки. · Поведенческий – поведение, особенно в момент размножения. · Экологический – совокупность факторов внешней среды, необходимых для жизни вида (температура, влажность, пища, конкуренты и т.п.) · Географический – ареал (область распространения), т.е. территория, на которой живет данный вид. · Генетико-репродуктивный – одинаковое количество и строение хромосом, что позволяет организмам давать плодовитое потомство. Критерии вида относительны, т.е. по одному критерию нельзя судить о виде. Например, существуют виды-двойники (у малярийного комара, у крыс и т.д.). Они морфологически друг от друга не отличаются, но имеют разное количество хромосом и поэтому не дают потомства. (То есть морфологический критерий не работает [относителен], но работает генетико-репродуктивный). 25)Популяции Популяция Группа индивидов, способных к репродукции. совокупность особей одного вида, в определенной степени изолированная от других аналогичныхсовокупностей, характеризующихся общностью происхождения, местообитания (ареал) и образующихцелостную генетическую систему (общий генофонд). Большинство популяций имеет сложнуюиерархическую структуру, подразделяясь на ряд естественных более мелких единиц (локальных популяцийи демов) и в то же время входя в более крупные популяционные системы. Основные критерии популяцииэто: единство местообитания (ареал); единство происхождения; относительная изолированность группы отдругих групп; отсутствие значительных внутрипопуляционных барьеров; возможность поддержаниячисленности, достаточной для самовоспроизведения группы. Существуют несколько десятков иныхопределений, согласно самому короткому из которых популяция представляет собой группу организмов, принадлежащих к одному виду и занимающих в данный момент времени определенное место впространстве (подробнее см. в Теме 2). · · 26)Основные типы эволюционны изменений. Дивергенция, Конвергенция, Параллелизм При построении филогенетических рядов биологи-эволюционисты, помимо палеонтологических данных, широко используют сравнительный метод, с помощью которого они устанавливают сходство в строении организмов, их биохимических реакциях, особенностях размножения или иных свойствах, по которым можно судить о путях развития группы от общего предка. Выделяют следующие характерные типы эволюционных изменений: параллелизм, конвергенция и дивергенция. Иногда один филогенетический ряд может содержать в себе примеры изменений различного типа. Параллелизм. Два разных вида дикобраза эволюционируют независимо друг от друга в Африке и Южной Америке. Более 7 мил. лет назад, они обитали вместе, их общмй предок был похож на большую покрытую шерстью крысу. Когда два континента разошлись, популяция разделилась на две части, каждая из которых развивалась независимо от другой. Но они очень близки по строению и образу. Конвергенция. Когда два или более вида, не связанные близким родством, становятся похожими друг на друга. Так крупные водные хищники возникли в четырех совершенно разных группах: среди рыб, пресмыкающихся, птиц и млекопитающих. Их внешнее сходство возникло в процессе эволюционного развития под влиянием образа жизни и факторов внешней среды при совершенно разных исходных положениях организмов. Это сходство скрывает глубокие различия внутреннего строения и обмена веществ результат глубоких различий их эволюционной истории. Гомология и аналогия. При параллельной и конвергентной эволюции сходство внешнего строения может быть результатом гомологии — происхождения от общего предка или аналогии — независимой эволюции тех систем органов, которые выполняют сходные функции. Так крылья у птиц и насекомых имеют разное происхождение - это пример аналогии. Гомологичные структуры уже в эмбриональный период развиваются по одинаковым генетическим программам. Аналогичные структуры, наоборот, выполняют одинаковые функции однако не имеют общего генетического базиса. Птицы и мухи летают в одной среде, но не имеют общего крылатого предка и путешествуют в эволюционной истории разными маршрутами. Дивергенция. Эволюция или радиация: общий предок дал начало двум или большему количеству форм которые, в свою очередь, стали родоначальниками многих видов и родов. Так, класс млекопитающих распался на многочисленные отряды которые различаются по внешнему строению, особенностям экологии, по характеру физиологических и поведенческих адаптаций (насекомоядные, рукокрылые, лищные, китообразные и др.). Выделяют три главные линии эволюции. 1. Ароморфоз - наиболее существенные эволюционные изменения. Живорождение, способности к поддержанию постоянной температуры тела, возникновение замкнутой системы кровообращения, а у растений - появление цветка, сосудистой системы, способности к поддержанию и регулированию газообмена в листьях. 2. Идиоадаптация - это прогрессивные, но мелкие эволюционные изменения, которые повышают приспособленность организмов к условиям среды обитания. Защитная окраска животных или приспособления некоторых рыб (камбала, сом) к жизни у дна — уплощение тела, окраска под цвет грунта, развитие усиков и пр. 3. Дегенерация - утрата ряда систем и органов и часто связана с переходом к паразитическому образу жизни. Упрощение организации паразита затрагивает системы, необходимые для жизни в открытой среде, но лишние внутри хозяина — органы ориентации, пищеварения, движения и т. п. 27)Аналогичные и гомологичные органы. Аналогичные органы — это органы, разные по происхождению, имеющие внешнее сходство и выполняющие сходные функции. Аналогичными есть жабры речного рака, головастика и жабры личинок стрекоз. Спинной плавник касатки (китообразные млекопитающие) аналогичен спинному плавнику акулы. Аналогичны бивни слона (разросшиеся резцы) и бивни моржа (гипертрофированные клыки), крылья насекомых и птиц, колючки кактусов (видоизмененные листья) и колючки барбариса (видоизмененные побеги), а также шипы шиповника (выросты кожицы). Аналогичные органы возникают у далеких организмов вследствие приспособлений их к одинаковым условиям среды или выполнения органами одинаковой функции Гомологичные органы — органы, сходные по происхождению, строению, расположению в организме. Конечности всех наземных позвоночных гомологичны, потому что они отвечают критериям гомологичности: имеют общий план строения, занимают сходное положение среди других органов, развиваются в онтогенезе из сходных эмбриональных зачатков. Гомологичны ногти, когти, копыта. Ядовитые железы змей гомологичны слюнным железам. Молочные железы — гомологи потовых желез. Усики гороха, иглы кактуса, иглы барбариса - гомологи, все они - видоизменение листьев. Сходство в плане строения гомологичных органов есть следствие общности происхождения. Существование гомологичных структур есть следствие существования гомологичных генов. Различия возникают вследствие изменения функционирования этих генов под действием эволюционных факторов, а также вследствие ретардаций, акце-лераций и других изменений эмбриогенеза, ведущих к дивергенции форм и функций. 28) Арогенез. Арогенез — процесс преобразования организации, ведущий к ароморфозу (синоним − анагенез[1]). Иногда используется как синоним понятия ароморфоз, что является не совсем корректным (см. аргументацию, например: А. С. Северцов 1987: 64). Арогенез в качестве макроэволюционного процесса не может быть непрерывным, поскольку в этом случае утрачивается преемственность, и адаптации для организмов (таксонов) оказываются невозможными. Поэтому в качестве постоянного эволюционного процесса арогенез может мыслиться только как некая идеальная линия, составленная из развития разных таксонов. Арогенез — направление эволюции, при котором, в результате приобретения новых крупных приспособлений, развитие групп сопровождается расширением адаптивной зоны и выходом в другие природные зоны. · 29) Филетическая эволюция. Филетическая эволюция (от греч. phyle — род, племя) — это изменения, происходящие в одном филогенетическом стволе (без учета всегда возможных дивергентных ответвлений). Автор термина американский палеонтолог Дж. Симпсон. Без таких изменений не может протекать никакой эволюционный процесс, и поэтому филетическую эволюцию можно считать одной из элементарных форм эволюции. 30)Хромосомные перестройки. Хромосомные перестройки (хромосомные мутации, или хромосомные аберрации) — тип мутаций, которые изменяют структуру хромосом. Классифицируют следующие виды хромосомных перестроек: делеции (утрата участка хромосомы), инверсии (изменение порядка генов участка хромосомы на обратный), дупликации (повторение участка хромосомы), транслокации (перенос участка хромосомы на другую), а также дицентрические и кольцевые хромосомы. Известны также изохромосомы, несущие два одинаковых плеча. Если перестройка изменяет структуру одной хромосомы, то такую перестройку называют внутрихромосомной (инверсии, делеции, дупликации, кольцевые хромосомы), если же двух разных, то межхромосомной (дупликации, транслокации, дицентрические хромосомы). Хромосомные перестройки подразделяют также на сбалансированные и несбалансированные. Сбалансированные перестройки (инверсии, реципрокные транслокации) не приводят к потере или добавлению генетического материала при формировании, поэтому их носители, как правило, фенотипически нормальны. Несбалансированные перестройки (делеции и дупликации) меняют дозовое соотношение генов, и, как правило, их носительство сопряжено с существенными отклонениями от нормы. Хромосомные перестройки играют роль в эволюционном процессе и видообразовании[1], в нарушении фертильности, в онкологических[2] и врождённых наследственных заболеваниях человека. Делеции[править | править вики-текст] Основная статья: Делеция Различают терминальные (утрата концевого участка хромосомы) и интеркалярные (утрата участка на внутреннем участке хромосомы) делеции. Если после образования делеции хромосома сохранила центромеру, она аналогично другим хромосомам передается при митозе, участки же без центромеры, как правило, утрачиваются. При конъюгации гомологичных хромосом во время мейоза у нормальной хромосомы на месте, соответствующем интеркалярной делеции у дефектной хромосомы, образуется делеционная петля, которая компенсирует отсутствие делетированного участка. Врождённые делеции у человека редко захватывает протяженные участки хромосом, обычно такие аберрации приводят к гибели эмбриона на ранних этапах развития. Самым хорошо изученным заболеванием, обусловленным достаточно крупной делецией, является синдром кошачьего крика, описанный в 1963 году Жеромом Леженом. В его основе лежит делеция участка короткого плеча 5 хромосомы. Для больных характерен ряд отклонений от нормы: нарушение функций сердечно-сосудистой, пищеварительной систем, недоразвитие гортани (с характерным криком, напоминающим кошачье мяуканье), общее отставание развития, умственная отсталость, лунообразное лицо с широко расставленными глазами. Синдром встречается у 1 новорожденного из 50000. Современные методы выявления хромосомных нарушений, прежде всего флуоресцентная гибридизация in situ, позволили установить связь между микроделециями хромосом и рядом врождённых синдромов. Микроделециями, в частности, обусловлены давно описанные синдром Прадера-Вилли и синдром Вильямса. Дупликации[править | править вики-текст] Основная статья: Дупликация Дупликации представляют собой класс перестроек, который объединяет как внутри-, так и межхромосомные перестройки. Вообще, любая дупликация — это появление дополнительной копии участка хромосомы, которая может располагаться сразу за тем районом, который дуплицирован, тогда это тандемная дупликация, либо в новом месте или в другой хромосоме. Новая копия может образовать отдельную маленькую хромосому со своими собственными теломерами и центромерой, тогда это свободная дупликация[4]: 2. Тандемные дупликации появляются в половых клетках при мейозе в результате неравного кроссинговера (в этом случае второй гомолог несет делецию) или в соматических клетках в результате неаллельной гомологичной рекомбинации при репарации двунитевого разрыва ДНК. В процессе кроссинговера у гетерозиготы при конъюгации хромосомы с тандемной дупликацией и нормальной хромосомы, как и при делеции, формируется компенсационная петля. Практически у всех организмов в норме наблюдается множественность генов, кодирующих рРНК (рибосомальную РНК). Это явление назвали избыточностью генов. Так у E. coli на рДНК (ДНК, кодирующее рРНК) приходится 0, 4 % всего генома, что соответствует 5-10 копиям рибосомальных генов. Другой пример дупликации — мутация Bar у Drosophila, обнаруженная в 1920-х годах Т. Морганом и А. Стёртевантом. Мутация обусловлена дупликацией локуса 57.0 X-хромосомы. У нормальных самок (B+/B+) глаз имеет 800 фасеток, у гетерозиготныхсамок (B+/B) глаз имеет 350 фасеток, у гомозигот по мутации (B/B) — всего 70 фасеток. Обнаружены также самки с трижды повторенным геном — double Bar (BD/B+). В 1970 году Сусумо Оно[en] в монографии «Эволюция путем дупликации генов» разработал гипотезу об эволюционной роли дупликаций, поставляющих новые гены, не затрагивая при этом функций исходных генов. В пользу этой идеи говорит близость ряда генов по нуклеотидному составу, кодирующих разные продукты. Это трипсин и химотрипсин, гемоглобин и миоглобин и ряд других белков. Инверсии[править | править вики-текст] Основная статья: Инверсия (биология) Инверсией называют поворот участка хромосомы на 180°. Различают парацентрические (инвертированный фрагмент лежит по одну сторону от центромеры) и перицентрические (инвертированный фрагмент лежит по разные стороны от центромеры) инверсии. При инверсиях не происходит потери генетического материала, поэтому инверсии, как правило, не влияют на фенотип носителя. Однако, если у гетерозигот по инверсиям (то есть у организма, несущего как нормальную хромосому, так и хромосому с инверсией) в процессе гаметогенеза при мейозе происходит кроссинговер в пределах инвертированного участка, то существует вероятность формирования аномальных хромосом, что в свою очередь может привести к частичной элиминации половых клеток, а также формировании гамет с несбалансированным генетическим материалом. Более 1 % человеческой популяции являются носителями перицентрической инверсии в 9 хромосоме, которую считают вариантом нормы[5]. Транслокации[править | править вики-текст] Основная статья: Транслокация Детекция филадельфийской хромосомы при помощифлуоресцентной гибридизации in situ Транслокации представляют собой межхромосомную перестройку, при которой происходит перенос участка одной хромосомы на другую. Отдельно выделяют реципрокные транслокации (когда две негомологичные хромосомы обмениваются участками) и Робертсоновские транслокации, или центрические слияния (при этом две негомологичные акроцентрические хромосомы объединяются в одну с утратой материала коротких плеч). Первым центрические слияния описал американец У.Робертсон (W.R.B.Robertson) в 1916 году, сравнивая кариотипы близких видов саранчовых. Реципрокные транслокации не сопровождаются утратой генетического материала, их также называют сбалансированными транслокациями, они, как правило, не проявляются фенотипически. Однако, у носителей реципрокных транслокаций половина гамет несёт несбалансированный генетический материал, что приводит к снижению фертильности, повышенной вероятности спонтанных выкидышей и рождения детей с врождёнными аномалиями. Частота гетерозигот по реципрокным транслокациям оценивается как 1 на 600 супружеских пар. Реальный риск рождения детей с несбалансированным кариотипом определяется характером реципрокной транслокации (спецификой хромосом, вовлеченных в перестройку, размерами транслоцированных сегментов) и может достигать 40 %. Примером реципрокной транслокации может служить транслокация типа «филадельфийская хромосома» (Ph) между хромосомами 9 и 22. В 95 % случаев именно эта мутация в гемопоэтических клетках-предшественниках является причиной хронического миелобластного лейкоза. Эту перестройку описали П. Новелл (P. Nowell) и Д. Хангерфорд (D. Hungerford) в 1960 году и назвали в честь города в США, где оба работали. В результате этой транслокации ген ABL1 из хромосомы 9 объединяется с геном BCR хромосомы 22. Активность нового химерного белка приводит к нечувствительности клетки к воздействию факторов роста и вызывает её безудержное деление. Робертсоновские транслокации являются одним из наиболее распространенных типов врождённых хромосомных аномалий у человека. По некоторым данным, их частота составляет 1: 1000 новорожденных. Их носители фенотипически нормальны, однако у них существует риск самопроизвольных выкидышей и рождения детей с несбалансированным кариотипом, который существенно варьирует в зависимости от хромосом, вовлеченных в слияние, а также от пола носителя. Большинство Робертсоновских транслокаций (74 %) затрагивают хромосомы 13 и 14. В структуре обращаемости на пренатальную диагностикулидерами оказываются носители der(13; 14) и der(14; 21)[6]: 1. Последний случай, а именно, Робертсоновская транслокация с участием хромосомы 21 приводит к так называемому «семейному» (наследуемому)синдрому Дауна. Робертсоновские транслокации, возможно, являются причиной различий между числом хромосом у близкородственных видов. Показано, что два плеча 2-й хромосомы человека соответствуют 12 и 13 хромосомам шимпанзе. Возможно, 2-я хромосома образовалась в результате робертсоновской транслокации двух хромосом обезьяноподобного предка человека. Таким же образом объясняют тот факт, что различные виды дрозофилы имеют от 3 до 6 хромосом. Робертсоновские транслокации привели к появлению в Европе нескольких видов-двойников (хромосомные расы) у мышей группы видов Mus musculus, которые, как правило, географически изолированы друг от друга. Набор и, как правило, экспрессия генов при робертсоновских транслокациях не изменяются, поэтому виды практически неотличимы внешне. Однако они имеют разные кариотипы, а плодовитость при межвидовых скрещиваниях резко понижена.
31)Рудименты и атавизмы. Привести примеры. Рудименты - это третье веко у человека, аппендикс (червеобразный отросток слепой кишки), ушные мышцы, копчик — все это рудименты. У человека насчитывается около сотни рудиментов. У безногой ящерицы — веретеницы — есть рудиментарный плечевой пояс конечностей. У китов есть рудимент тазового пояса. Наличие рудиментов объясняется тем, что эти органы у далеких предков были нормально развиты, но в процессе эволюции потеряли свое значение и сохранились в виде остатков. У растений тоже бывают рудименты. На корневищах (видоизмененных побегах) пырея, ландыша, папоротника есть чешуйки. Это рудименты листьев. В краевых соцветиях сложноцветных (нивяника, астр, подсолнечника) под лупой видны недоразвитые тычинки. Рудименты — важные доказательства исторического развития органического мира. Рудименты тазовых костей у китов и дельфинов подтверждают предположение о происхождении их от наземных четвероногих предков с развитыми задними конечностями. Рудиментарные задние конечности веретеницы и питона указывают на происхождение этих рептилий (так же, как и всех змей) от предков, имевших конечности. Атавизмы. У человека атавизмами есть хвост, волосяной покров на всем лице, многососковость. На вымени у некоторых коров появляется третья пара сосков. Это указывает на то, что крупный рогатый скот произошел от животных, имевших более четырех сосков. У мух дрозофил — гомозигот по мутации тетраптера - вместо жужжалец развиваются нормальные крылья. Это не возникновение нового признака, а возврат к старому Антенна у дрозофилы иногда превращается в членистую ножку. У лошади может быть трехпалость, как у меригиппуса. Отличие рудиментов от атавизмов: · рудименты есть у всех особей вида, а атавизмы — лишь у немногих; · рудименты несут определенную функцию, а атавизмы (все без исключения) не несут каких-либо функций. · Возможности и границы мутационных процессов??????? 32)Биогенетический закон Геккеля-Мюллера. Биогенетический закон был сформулирован Э.Геккелем: " Онтогенез есть быстрое и краткое повторение филогенеза (исторического развития вида)". Геккель утверждал, что филогенез есть причина онтогенеза: идивидуальное развитие полностью обусловлено историей развития вида. В дальнейшем эти взгляды были частично отвергнуты наукой, а частично видоизменены и дополнены. Немецкие ученые Ф. Мюллер и Э. Геккель во второй половине XIX в. установили закон соотношения онтогенеза и филогенеза, который получил название биогенетического закона. Согласно этому закону, каждая особь в индивидуальном развитии (онтогенезе) повторяет историю развития своего вида (филогенез), или, короче, онтогенез есть повторение филогенеза. Однако за короткий период индивидуального развития особь не может повторить все этапы эволюции, которая совершалась тысячи или миллионы лет. Поэтому повторение стадий исторического развития вида в индивидуальном развитии особи происходит в сжатой форме, с выпадением ряда этапов. Кроме того, эмбрионы имеют сходство не со взрослыми формами предков, а с их зародышами. Так, в онтогенезе млекопитающих имеется этап, на котором у зародышей образуются жаберные дуги. У зародыша рыбы на основании этих дуг образуется орган дыхания - жаберный аппарат. В онтогенезе млекопитающих повторяется не строение жаберного аппарата взрослых рыб, а строение закладок жаберного аппарата зародыша, на основе которых у млекопитающих развиваются совершенно иные органы. В разработке теории онтогенеза выдающуюся роль сыграли исследования академика А.Н. Северцова. Он доказал, что изменения исторического развития обусловлены изменениями хода зародышевого развития. Наследственные изменения затрагивают все стадии жизненного цикла, в том числе и зародышевый период. Мутации, возникающие в ходе развития зародыша, как правило, нарушают взаимодействие в организме и ведут к его гибели. Однако мелкие мутации могут оказаться полезными и тогда сохранятся естественным отбором. Они передадутся потомству, включатся в историческое развитие, влияя на его ход. Обычно эмбриональные стадии развития изменяются в процессе эволюции не так значительно, как взрослые животные. Поэтому при сравнении эмбрионов и личинок даже далеких друг от друга животных между ними нередко обнаруживается большое сходство, свидетельствующее о родстве. Особенный интерес для эволюционной зоологии представляют рекапитуляции, т.е. повторения в ходе индивидуального развития характерных особенностей строения более или менее отдаленных предков. Приведем лишь один классический пример. Систематическое положение и происхождение асцидий (Ascidiae), ведущих сидячий образ жизни, долгое время были совершенно неясны, и только знаменитое исследование А. О. Ковалевского (1866) по развитию этих животных окончательно решило вопрос. Из яйца асцидий выходит свободноплавающая хвостатая личинка, сходная по плану строения с хордовыми (Chordata). Во время метаморфоза осевшей на дно личинки хвост с хордой и мускулатурой и органы чувств исчезают, нервная трубка редуцируется до степени небольшого нервного узелка, происходит усиленное разрастание брюшной поверхности тела, образуются сифоны и т.д., т.е. появляются особенности организации, связанные с сидячим образом жизни. Сформированная молодая асцидия не имеет уже почти ничего общего с другими хордовыми животными. В этом примере личинка своей организацией рекапитулирует (повторяет) главные черты строения свободноплавающего предка. Так было найдено естественное место асцидий в системе животного царства 33)Изоляция, Изоля́ ция (в генетике популяций) — исключение или затруднение свободного скрещивания между особями одного вида. Изоляция является элементарным эволюционным фактором, действующим на микроэволюционном уровне, и приводит квидообразованию. По характеру изолирующих барьеров классифицируют географическую и репродуктивную (биологическую) изоляцию 34) популяционные волны Популяционные волны или волны жизни — периодические либо непериодические колебания численности особей организмов в природных популяциях[1]. Данный термин впервые был введён русским биологом Сергеем Сергеевичем Четвериковым в1905 году. Данное явление распространяется на любые виды растений и животных, включая микроорганизмы. Данные колебания численности могут быть сезонными либо несезонными, повторяющимися через различные временные промежутки. Период колебаний численности у белок — 8—11 лет, у мышевидных грызунов — около 10 лет, бабочки-капустницы — 10—12 лет, североамериканского зайца-беляка и рыси на севере Канады — 9—10 лет, саранчи — около 11 лет. Часто популяционные волны сопровождаются колебаниями ареала самих популяций. Причины колебаний обычно могут иметь экологическую природу. Например, размеры популяций «жертвы» (зайца) увеличиваются при снижении популяции «хищника» (лисицы, рыси, волка). При этом, увеличение кормовых ресурсов способствует росту численности хищников, что, в свою же очередь, интенсифицирует истребление жертв. Принято различать большие и малые волны жизни. Первые могут достигать большого размера даже у сравнительно крупных, но быстро размножающихся животных. Например, численность зайца-беляка в некоторые годы может возрастать в 1000 и даже 2500 раз. У плодовитых видов мелкого размера данная амплитуда несравненно больше, например у отдельных насекомых она достигает 10 тысяч раз[2], численность майских жуков может увеличиваться в миллион раз, сибирского шелкопряда — в 12 миллионов раз. Вспышки численности организмов ряда видов, которые наблюдаются в ряде регионов мира, могут быть обусловленными деятельностью человека. В XIX—XX веках примерами этого являются популяции домовых воробьев в Северной Америке, кроликов в Австралии, канадской элодеи в Евразии. В настоящее время также возросли размеры популяций домовой мухи, которые находят кормовую базу в виде разлагающихся пищевых отходов вблизи поселений человека. Напротив, численность популяций домовых воробьев сокращается в городах вследствие прекращения широкого использования лошадей. Популяционные волны являются эффективным фактором преодоления генетической инертности природных популяций. Волны жизни имеют большое эволюционное значение, будучи одним из четырех эволюционных факторов наряду с изоляцией, мутациями и естественным отбором. , 35)дрейф генов Дрейф ге́ нов или гене́ тико-автомати́ ческие проце́ ссы — явление ненаправленного изменения частот аллельных вариантов генов в популяции, обусловленное случайными статистическими причинами. Один из механизмов дрейфа генов заключается в следующем. В процессе размножения в популяции образуется большое число половых клеток — гамет. Большая часть этих гамет не формирует зигот. Тогда новое поколение в популяции формируется из выборки гамет, которым удалось образовать зиготы. При этом возможно смещение частот аллелей относительно предыдущего поколения. Первые работы по изучению случайных процессов в популяциях были проведены в начале 1930-х годов Сьюэлом Райтом в США, Роналдом Фишером в Англии, а также В. В. Лисовским, М. А. Кузнецовым, Н. П. Дубининым и Д. Д. Ромашовым в СССР. Понятие «дрейф генов» (англ. genetic drift) было введено в оборот Райтом (1931), а синонимичное понятие «генетико-автоматические процессы в популяциях» — Дубининым и Ромашовым (1932). Впоследствии в мировой литературе (в том числе и в русскоязычной) закрепился термин С. Райта.[1] · И36) элиминация генов. Элиминация хромосомы (лат. elimino, eliminatum выносить за порог, удалять) — утрата клеткой хромосомы во время митоза или мейоза
|