![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Механизм сокращения гладкомышечных клеток кровеносных сосудов.
Гладкомышечные клетки (ГМК) образуют мышечные пучки, которые формируют слой гладкой мускулатуры. В субэндотелиальном слое сосудов встречаются и единичные ГМК. В саркоплазме у полюсов центрально расположенного ядра находятся митохондрии, свободные рибосомы и саркоплазматический ретикулум (СПР). Миофиламенты ориентированы вдоль продольной оси клетки. Нити актина прикрепляются к плотным тельцам, аналогам Z-мембран. Миозин представлен толстыми миозиновыми нитями. В ГМК роль тропонина выполняет кальмодулин (кальцийсвязывающий белок, обладающий киназной активностью. Депо кальция в ГМК наряду с СПР выполняют и кавеолы (пузырьки под сарколеммой). У ГМК в мембране СПР имеются молекулы кальциевой АТФазы, активация которой обеспечивает транспорт кальция из цитозоля в СПР. Кальциевая АТФ-аза обеспечивает поддержание низкого уровня кальция в цитозоле. У ГМК в мембране СПР имеются кальциевые каналы, сопряженные с рианодиновыми рецепторами. В мембранах ГМК имеется много потенциалзависимых кальциевых каналов, которые открываются при возбуждении ГМК и через них входит небольшое количество кальция, он выступает как триггерные рецепторы и активирует рианодиновые рецепторы, сопряженные с кальциевыми каналами СПР, что вызывает значительное выделение в цитозоль из СПР ионов кальция, инициирующего процессы, обеспечивающие сокращение ГМК. Рецепторы в саркоплазматической мембране ГМК для сосудосуживающих веществ сопряжены с субъединицей Gaq и фосфолипазой С, активация которой приводит к образованию ИФ3 и ДАГ. ИФ3 активирует кальциевые каналы СПР, а ДАГ - протеинкиназу С. Кальций взаимодействует с кальмодулином, кальций-кальмодулиновый комплекс активирует фосфорилирование легких цепей актина, а протеинкиназа С - миозинкиназу, ответственную за фосфорилирование тяжелых цепей миозина. Это создает все необходимые условия для формирования мостиков, обеспечивающих гребковые движения, скольжение нитей относительно друг друга, что в конечном счете обеспечивает сокращение ГМК. Рецепторы в саркоплазматической мембране ГМК для сосудорасширяющих веществ сопряжены через субъединицу Gas с аденилатциклазой, естественно, что взаимодействие агониста с таким рецептором приводит к повышению цАМФ в цитозоле, что вызывает активацию кальциевой АТФазы и, как следствие, снижение ионов кальция в цитоплазме и расслабление ГМК. Для ряда веществ рецепторы имеются в эндотелии мелких кровеносных сосудов. Активация эндотелиальной NO-синтазы сопровождается значительным увеличением NO, который диффундирует в миоцит и вызывает активацию цитозольной растворимой гуанилатциклазы, что вызывает через увеличение концентрации цГТФ активацию протеинкиназы G. Активированная протеинкиназа G способна: • фосфорилировать мембранные белки, образующие лигандуправляемые К+- и анионные каналы, что увеличивает проницаемость этих, каналов для соответствующих ионов; • фосфорилировать мембранные белки, образующие лигандуправляемые Na+- и Са++- каналы, что приводит к уменьшению их проницаемости; • фосфорилировать мембранные белки, образующие K+/Na+- насос, что приводит к уменьшению его активности. Фосфорилирование лигандуправляемых калиевых, натриевых, кальциевых каналов и K+/Na+- насоса протеинкиназой G в конечном счете гиперполяризует мембрану гладкомышечых миоцитов, вызывая их расслабление. цГМФ одновременно ингибирует протеинкиназу С, что опосредованно (через активность миозинкиназы) способствует уменьшению фосфорилирования миозина и способствует расслаблению гладкомышечных миоцитов. 59. Системная гемодинамика… Основные параметры, характеризующие системную гемодинамику: 1. Системное артериальное давление. 2. Общее периферическое сопротивление. 3. Сердечный выброс. 4. Работа сердца. 5. Венозный возврат крови к сердцу. 6. Центральное венозное давление. 7. Объем циркулирующей крови.
|