![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Характеристика ионизирующих излучений и радиоактивных веществ
Излучение, способное при взаимодействии с веществом прямо или косвенно создавать в нем заряженные частицы – ионы, относят к ионизирующим. Радиоактивность – самопроизвольный распад атомных ядер химических элементов (урана, тория, радия и др.), что приводит до изменения их атомного номера и массового числа. При их распаде образуются разные частицы и электромагнитные излучения, которые способны ионизировать окружающую среду (вещество). Ионизирующие излучения представляют собой α, β, γ и п, испускаемые радиоактивными веществами. Альфа – излучение (α) представляет собой поток ядер гелия с низкой проникающей и высокой ионизирующей способностью. Пробег α – частиц в воздухе составляет 3 – 12 см, в ткани человеческого тела они проникают на десятые доли миллиметра. Энергия α – частиц находится в пределах 4, 5 – 8 МэВ. Ионизирующая способность на 1 см пути в воздухе составляет несколько десятков тысяч пар ионов. Бета – излучение (β) – поток β – частиц, электронов и позитронов. Ионизирующая способность около 100 пар ионов на 1 см пути, проникающая – до 14, 5 метров в воздухе. Энергия β – частиц достигает до 10 мегаэлектроновольт. Гама – излучение – это поток γ – квантов, представляющий собой электромагнитное излучение с длиной волны в пределах 0, 001 – 0, 1 А. Ионизирующая способность небольшая – несколько пар ионов на 1 см пути, проникающая очень высокая, достигая в воздухе несколько сотен метров; γ – излучения могут проникать через бетонные стены большой толщины, пластины свинца и сквозь тело человека. Нейтронное излучение (п) – поток нейтральных частиц. В зависимости от энергии подразделяется на тепловое (до 0, 5 МэВ), быстрое (до 0, 5 – 10 МэВ) и сверхбыстрое (свыше 10 МэВ). При соударении быстрых нейтронов с ядрами атомов образуются ядра отдачи. Быстрые нейтроны при взаимодействии с ядрами атомов теряют свою энергию и превращаются в медленные. Медленные и тепловые нейтроны при соударении с ядрами атомов вступают с ними в реакцию с образованием радиоактивных изотопов (наведенная радиация). При взаимодействии нейтронов с ядрами элементов могут возникнуть α – и β – излучения. Нейтронные излучения обладают огромной проникающей способностью. Радиоактивность вещества характеризуется числом спонтанных распадов в единицу времени. Единицей измерения активности (С) является одно ядерное превращение в секунду, называемая беккерель (Бк). Используется внесистемная единица, называемая кюри (Ки) и равная 3, 7 ∙ 1010 ядерных превращений в секунду. Производные единицы: милликюри (1 мКи = 1∙ 10-3 Ки), микрокюри (1 мкКи = 1∙ 10-6 Ки), нанокюри (1 нКи = 1∙ 10-9 Ки) и др. Распад разноактивных веществ происходит для каждого вида с определенной скоростью. Число ядер данного элемента, которое распадается за единицу времени (А), пропорционально полному числу ядер (N) элемента
А = - dN / dt = λ ∙ N (1) где λ – постоянная радиоактивного распада данного элемента. Этот процесс можно описать формулой
Nt = N0 (- λ ∙ t) (2) где N0, Nt – число радиоактивных ядер в начальный момент и через период времени t соответственно. Чем большая доля общего числа атомов распадается в единицу времени, тем быстрее протекает распад радиоактивного элемента. Скорость радиоактивного распада постоянна для каждого данного элемента. Она не зависит от физических и химических условий, и наука не знает средств могущих изменять ее. Для характеристики скорости распада принято пользоваться величиной периода полураспада, то есть времени, в течение которого половина первоначального числа атомов претерпевает радиоактивный распад. Между периодом полураспада Т и постоянной распада λ существует определенная зависимость, которая выражается уравнением:
где 0, 693 = 1 п 2. Для различных радиоактивных изотопов постоянная полураспада колеблется в широких пределах: от ничтожных долей секунды до многих миллиардов лет. Активность веществ (С) можно определить по формуле
С = λ ∙ N (4) где N – количество радиоактивных атомов в веществе. Характерным результатом взаимодействия радиоактивных излучений с веществом является ионизация. Заряженные альфа – и бета – частицы, испускаемые радиоактивными веществами, взаимодействуют с атомами среды. При этом один электрон выбивается из атома, и атом, потерявший электрон, становится положительно заряженным ионом. Отрицательно заряженный электрон, двигаясь в среде, в свою очередь может производить ионизацию других атомов среды, то есть вторичную ионизацию, и т.д. Средняя энергия, необходимая для образования одной пары ионов, называется средней работой ионизации. Средняя работа ионизации зависит от характера ионизируемой среды и других факторов. Взаимодействие гамма – излучения с веществом иное и более сложное, чем альфа – и бета – излучений. Не вдаваясь в подробное рассмотрение, следует отметить, что ионизация среды при воздействии гамма – лучей производится главным образом вторичными электронами, возникающими в результате взаимодействия гамма – лучей с атомами вещества среды. Поглощенную энергию радиоактивных излучений в любой среде (так же как и действие рентгеновских лучей) принято характеризовать величиной, называемой «дозой». Доза излучения определяется как энергия, пглащенная единицей массы вещества. Величина поглощенной дозы зависит от свойств излучения и поглощающей среды.
Дпог = dE / dm (5) где dE – средняя энергия, поглощенная веществом в элементарном объеме; dm – элементарный объем вещества. Единицей поглощенной дозы (в системе СИ) принят джоуль на килограмм (Дж/кг) – Грей (Гр). Грей – поглощенная доза излучения, есть энергия в 1 Дж какого – либо ионизирующего излучения, которая передана одному килограмму вещества. Часто применяют внесистемную единицу поглощения – рад. 1 рад = 0, 01 Гр. Для характеристики дозы за эффектом ионизации в воздухе введено понятие экспозиционная доза (Дэкс)
Дэкс = dQ / dm (6) где dQ – суммарный заряд всех ионов одного знака, которые образовались в элементарном объеме воздуха при его облучении; dm – масса элементарного объема воздуха. Единицей экспозиционной дозы принят кулон на килограмм (Кл/кг). Внесистемной единицей экспозиционной дозы принят рентген (Р). Эффект воздействия ионизирующих излучений на организм зависит не только от поглощенной дозы, но также вида радиоактивного излучения и его энергии. Поэтому для оценки радиационной опасности хронического (длительного) облучения различного вида радиоактивных излучений введена эквивалентная доза (Дэкв), которая определяется по формуле
Дэкв = Дпог ∙ где Дпог – поглощенная доза, Гр, (рад);
Единицей измерения эквивалентной дозы принят в системе CИ 1Зв = Дж/кг, вне системная единица – бэр, 1 бэр = 0, 01 Зв. Таблица 1 Значения среднего коэффициента качества
При одинаковых эквивалентных дозах степень поражения отдельных органов и тканей тела человека зависит от радиационной чувствительности этих органов и ткани. Поэтому введено понятие эффективной дозы (Е), которая определяется по формуле
Е = Σ Дэкв.Т ∙ WТ (8)
где Дэкв.Т – эквивалентная доза в ткани или органе; WТ – тканевой важный фактор (WТ для кишечника, легких – 0, 12; для большинства внутренних органов – 0, 05; для кожи и костей – 0, 01; печень – 0, 05; желудок – 0, 12; мочевой пузырь – 0, 05).
|