![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Термодинамические основы работы парокомпрессионного теплового насоса
Так как в данной работе рассматривается парокомпрессионный тепловой насос, остановимся на нем. Для анализа работы теплового насоса используются T, S- и p, h- диаграммы (рисунки 3, 4). Рисунок 3 - T, S- диаграмма
Рисунок 4 - p, h- диаграмма
Тепловой насос представляет обращенную тепловую машину. В тепловой машине за счет передачи теплоты производится работа, в тепловом насосе наоборот, работа затрачивается на передачу теплоты. Схема идеального теплонасосного цикла представлена на рисунке 5. Рисунок 4 - Идеальный теплонасосный цикл Карно: qи – теплота, отдаваемая низкопотенциальным теплоносителем и получаемая хладагентом при его испарении; qк – теплота, отдаваемая хладагентом при его конденсации и получаемая высокопотенциальным теплоносителем; lсж – работа, необходимая для сжатия хладагента; W – энергия, подведенная к приводу; Т и (t и) и Т к (t к) – температуры испарения и конденсации
В идеальном теплонасосном цикле Карно осуществляются следующие процессы: Процесс 1-2 – обратимый процесс сжатия хладагента в компрессоре. Процесс 2-3 – изотермическая конденсация хладагента в конденсаторе и отдача теплоты высокопотенциальному теплоносителю. Процесс 3-4 – обратимый процесс расширения хладагента в детандере (устройстве для расширения, обратном компрессору). Процесс 4-1 – изотермическое испарение хладагента в испарителе за счет теплоты, отобранной у холодного теплоносителя. В парокомпрессионном тепловом насосе (рисунок 6) в отличие от теплонасоного цикла Карно следующие отличия. 1. Вместо детандера, из-за его высокой стоимости, используется дроссельный вентиль, процесс расширения в котором можно рассматривать как необратимый адиабатический. Дроссельный вентиль представляет собой клапан в виде регулируемого сопла или отверстия, либо нерегулируемую капиллярную трубку. Использование дросселя вместо детандера увеличивает потери, так как процесс идет не по адиабате, а по линии постоянной энтальпии. Потери будут больше, чем выше разность температур испарения и конденсации. 2. Сжимать технически возможно только газ, потому в компрессор должен поступать пар без примеси жидкости. Сжатие сопровождается потерями энергии и происходит не адиабатически, а политропно.
Рисунок 6 - Схема (№ 1) и цикл парокомпрессионного теплового насоса: t в1, t в2, t н, t н2 – температуры высокопотенциального и низкопотенциального теплоносителя на входе и выходе
Потери энергии в парокомпрессионном тепловом насосе вследствие необратимости процессов представлены на рисунке 7. В реальных циклах тепловых насосов на вход в компрессор должен подаваться пар без примеси жидкости. Поэтому пар перед компрессором должен быть несколько перегретым и точка 1 должна находится не на линии насыщения, а правее ее. Рисунок 7 - Потери в парокомпрессионном тепловом насосе вследствие необратимости процессов
Потери давления из-за трения в соединительных трубопроводах между конденсатором и дросселем вызывают частичное испарение фреона. Если на вход дросселя поступает парожидкостная смесь, эффективность его работы снижается. Поэтому жидкость после конденсатора дополнительно переохлаждают так, чтобы точка 3 находилась не на линии насыщения, а левее ее. Это также улучшает работу теплового насоса, так как снижает долю пара, поступающего в испаритель, что приводит к меньшему расхода фреона в цикле. Переохлаждение жидкости в конденсаторе невозможно, так как это требует более высокого температурного напора между фреоном и горячим теплоносителем а, значит, снижения температуры горячего теплоносителя (что невозможно по требованиям к получаемому теплоносителю) или повышения давления и температуры конденсации фреона (что значительно увеличит стоимость основного компонента теплового насоса – компрессора). Перегрев пара в испарителе также невозможен, так как температуру холодного теплоносителя изменить нельзя, поэтому для перегрева необходимо понижать температуру испарения, а, значит, увеличивать степень повышения давления в компрессоре. Переохлаждение жидкости и перегрев пара совмещают в дополнительном промежуточном теплообменнике, где горячий фреон после конденсатора нагревает холодный фреон после испарителя (рисунок 8).
Если горячий теплоноситель вырабатывается для водоснабжения, то есть поступает на вход намного холодней, чем выходит из теплового насоса, переохлаждение жидкости возможно в дополнительном теплообменнике – переохладителе, который устанавливается после конденсатора (рисунок 9).
Тепловые насосы малой мощности, как правило, выполняются с испарителем и конденсатором, а большой мощности – с промежуточным теплообменником, и, возможно, с переохладителем.
|