![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Полимеры. Общие свойства
Для изготовления изоляции используют большое число материалов, относящихся к группе полимеров. Полимеры - высокомолекулярные соединения, имеющие большую молекулярную массу. Молекулы полимеров, называемые макромолекулами, состоят из большого числа многократно повторяющихся структурных группировок (элементарных звеньев), соединенных в цепи химическими связями. Например, в молекуле поливинилхлорида: -CH2-CHCl-CH2-CHCl-CH2-CHCl-CH2-CHCl-CH2-CHCl- повторяющимся звеном является группировка: -CH2-CHCl-. Полимеры получают из мономеров - веществ, каждая молекула которых способна образовывать одно или несколько составных звеньев. Так как полимеры представляют собой смеси молекул с различной длиной цепи, то под молекулярной массой полимера понимают ее среднее статистическое значение. Молекулярная масса полимера может достигать значение несколько миллионов. Степень полимеризации является важной характеристикой полимеров - она равна числу элементарных звеньев в молекуле. Например, структурную формулу поливинилхлорида можно записать в компактном виде (-CH2-CHCl-)n, где n - степень полимеризации. Полимеры с низкой степенью полимеризации называют олигомерами. Полимеризацией называют реакцию образования полимера из молекул мономера без выделения низкомолекулярных побочных продуктов. При этой реакции в мономере и элементарном звене полимера соблюдается одинаковый элементный состав. Примером реакции является полимеризация этилена: nH2C=CH2 --> (-H2C-CH2-)n. Поликонденсация - реакция образования полимера из мономеров с одновременным образованием побочных низкомолекулярных продуктов реакции (воды, спирта и др.). Элементный состав мономерной молекулы отличается от элементного состава поимерной молекулы. Реакция поликонденсации лежит в основе получения важнейших высокополимеров, таких как фенолформальдегидные, полиэфирные смолы и др. Термином смола в промышленности иногда пользуются наряду с названием полимер. Полимеры делят на два типа - линейные и пространственные в зависимости от пространственной структуры макромолекул. В линейных полимерах макромолекулы состоят из последовательности повторяющихся звеньев с большим отношением длины молекулы к ее поперечному размеру. Макромолекулы пространственных полимеров связаны в общую сетку. Термопластические полимеры (термопласты) получают на основе полимеров с линейной структурой макромолекул. При нагревании они размягчаются, а при охлаждении затвердевают. При этом процессе не происходит никаких химических изменений. Для электрической изоляции применяются в основном в форме нитей или пленок, получаемых из расплавов. Способность к формированию и к растворению в подходящих по составу растворителях сохраняется у них и при повторных нагревах. Термореактивные полимеры получают из полимеров, которые при нагревании или при комнатной температуре вследствие образования пространственной сетки из макромолекул (отверждения) переходят в неплавкое и нерастворимое состояние. Этот процесс является необратимым. Линейные аморфные и кристаллизующиеся полимеры могут находиться в трех физических состояниях: стеклообразном, высокоэластичном и вязкотекучем. Кристаллические полимеры обычно содержат как кристаллическую, так и аморфную фазы. Многие свойства полимеров зависят от соотношения аморфной и кристаллической фаз - степени кристалличности. Электрические свойства полимеров. Для неполярных, очищенных от примесей полимеров, полученных полимеризацией (полиэтилен, полистирол, политетрафторэтилен и др.) характерны большие значения Значения tg Электрическая прочность Епр с повышением температуры резко снижается в области Тс для аморфных и Тпл для кристаллических полимеров. Полярные полимеры имеют более высокую Епр, чем неполярные в области комнатных и низких температур. Нагревостойкость полимерных материалов. Длительная рабочая температура линейных полимеров за исключением фторсодержащих полифенилов не превышает 120оС, особенно нагревостойкость кремнийорганических и некоторых элементоорганических полимеров, длительная рабочая температура которых достигает 180 - 200оС. Высокую устойчивость к действию повышенной температуры проявляют полимеры пространственного строения. Природные полимеры - целлюлоза, шеллак, лигнин, латекс, протеин и искусственные, получаемые путем переработки природных - натуральный каучук, целлюлоза и др. сыграли большую роль в современной технике. В некоторых областях, например в целлюлозо-бумажной промышленности они остаются незаменимыми. Однако для производства и потребления диэлектрических материалов в настоящее время наибольшее значение имеют синтетические полимеры.
|