Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Значение закона

Современная трактовка закона

Родственные виды, роды, семейства обладают гомологичными генами и порядками генов в хромосомах, сходство которых тем полнее, чем эволюционно ближе сравниваемые таксоны. Гомология генов у родственных видов проявляется в сходстве рядов их наследственной изменчивости (1987 г.).

Значение закона

1. Закон гомологических рядов наследственной изменчивости позволяет находить нужные признаки и варианты в почти бесконечном многообразии форм различных видов как культурных растений и домашних животных, так и их диких родичей.

2. Он дает возможность успешно осуществлять поиск новых сортов культурных растений и пород домашних животных с теми или иными требуемыми признаками. В этом заключается огромное практическое значение закона для растениеводства, животноводства и селекции.

3. Его роль в географии культурных растений сопоставима с ролью Периодической системы элементов Д. И. Менделеева в химии. Применяя закон гомологических рядов, можно установить центр происхождения растений по родственным видам со сходными признаками и формами, которые развиваются, вероятно, в одной и той же географической и экологической обстановке.

Хромосомная теория наслед Моргана. Хромосомная теория наследственности[1] — теория, согласнокоторой хромосомы, заключённые в ядре клетки, являются носителями генов и представляют собойматериальную основу наследственности, то есть преемственность свойств организмов в ряду поколенийопределяется преемственностью их хромосом. В одном из опытов Т. Моргана дрозофила, имевшая серую окраску тела и длинные крылья, была скрещена с особью, имевшей черную окраску тела и рудиментарные (укороченные) крылья. Первое поколение мух было с серым телом и длинными крыльями. При скрещивании этих гибридов между собой в F2 не произошло независимого распределения признаков по двум аллельным парам (серое тело — черное тело, длинные крылья — рудиментарные крылья) в отношении 9: 3: 3: 1. Среди гибридов F1 преобладающее число особей унаследовало такую же комбинацию признаков, какой она была у родительских форм (серые длиннокрылые и черные короткокрылые), и лишь очень небольшая часть мух была с перекомбинированными признаками (серые короткокрылые и черные длиннокрылые). Этот пример показывает, что гены, обусловливающие признаки серого тела и длинных крыльев и черного тела и коротких крыльев, наследуются преимущественно вместе.

На основании этого и большого числа подобных опытов Т. Морган пришел к выводу, что материальная основа сцепления генов — хромосома. Каждая из хромосом по своей длине неоднородна, она состоит из отдельных элементарных наследственных единиц — генов. У любого вида организмов их всегда во много раз больше, чем хромосом. Следовательно, в каждой хромосоме находится определенное число генов, которые наследуются совместно, образуя, так называемые группы сцепления. Число групп сцепления соответствует числу пар гомологичных хромосом.

Изучая явление сцепления генов, Т. Морган и его ученики установили, что сцепление почти никогда не бывает полным.

В разбираемом примере оно также не было полным, поскольку в небольшом числе случаев отмечена перекомбинация генов. Если гены разных аллельных пар лежат в одной и той же хромосоме, то есть сцеплены, то единственной причиной их перекомбинации может быть процесс конъюгации гомологичных хромосом в профазе мейоза. Во время конъюгации парные хромосомы сближаются и прикладываются одна к другой гомологичными участками, образуя биваленты (четверки хроматид).

В это время между хроматидами может происходить обмен гомологичными участками. Этот процесс получил название перекреста хромосом или кроссинговера (от англ. кроссинг — перекрещивание).

Показана схема перекреста хромосом и рекомбинации находящихся в них генов. Две парные хромосомы в результате перекреста и последующего разрыва обмениваются участками. Два гена А к В, расположенные первоначально в одной хромосоме, в результате кроссинговера оказываются в разных хромосомах и попадают в разные гаметы.

Гаметы с хромосомами, претерпевшими кроссинговер, называются кроссоверными, а гаметы, образованные хромосомами без кроссинговера, — некроссоверными. Соответственно этому и особи, возникшие с участием кроссоверных гамет, называются кроссоверными, или рекомбинантными, а образованные без них — некроссоверными, или нерекомбинантными.

Рекомбинация генов в процессе скрещивания приводит к новообразованиям. Возникают гибридные формы, представляющие исходный материал для отбора и создания новых сортов растений и пород животных. Образование гибридных форм в природе дает материал для естественного отбора, поэтому имеет важнейшее значение в эволюции живых организмов.

Таким образом, перекомбинация генов в процессе мейоза осуществляется двумя путями — случайным расхождением негомологичных хромосом (правило независимого комбинирования по Г. Менделю) и процессом перекреста гомологичных хромосом (явление кроссинговера, установленное Т. Морганом).

В итоге разбора основных положений хромосомной теории наследственности можно сделать следующие выводы.

Гены находятся в хромосомах, расположены линейно и образуют группу сцепления.

Гены, локализованные в одной хромосоме, наследуются сцепленно; сила этого сцепления зависит от расстояния между генами.

Между гомологичными хромосомами наблюдается перекрест, в результате которого происходит рекомбинация генов, имеющая важное значение как источник материала для естественного и искусственного отбора.

Сцепление генов и их рекомбинация в результате перекреста — закономерные биологические явления, в которых выражается единство процессов наследственности и изменчивости организмов.

Методы Селекции — создание новых сортов растений, пород животных и штаммов микроорганизмов с нужными человеку свойствами. Породы животных, сорта растений, штаммы микроорганизмов — это совокупности особей, созданные человеком и обладающие какими-либо ценными для него качествами. Теоретической основой селекции служит генетика.

Основные методы селекции — отбор, гибридизация, полиплоидия, мутагенез, а также клеточная и генная инженерия. Отбор В селекции действует естественный и искусственный отбор. Искусственный отбор бывает бессознательный и методический. Бессознательный отбор проявляется в сохранении человеком лучших особей для разведения и употреблении в пищу худших без сознательного намерения вывести более совершенный сорт или породу. Методический отбор осознанно направлен на выведение нового сорта или породы с желаемыми качествами.

В процессе селекции наряду с искусственным отбором не прекращает своего действия и естественный отбор, который повышает приспособляемость организмов к условиям окружающей среды.

Отбор бывает массовый и индивидуальный. Массовый отбор — выделение из исходного материала целой группы особей с желательными признаками и получение от них потомства. Индивидуальный отбор — выделение отдельных особей с желательными признаками и получение от них потомства. Массовый отбор чаще применяют в селекции растений, а индивидуальный — в селекции животных, что связано с особенностями размножения растений и животных.

Гибридизация Методом отбора нельзя получить новые генотипы. Для создания новых благоприятных комбинаций признаков (генотипов) применяют гибридизацию. Различают внутривидовую и межвидовую (отдаленную) гибридизацию.

Внутривидовая гибридизация — скрещивание особей одного вида. Применяют близкородственное скрещивание и скрещивание неродственных особей.

Близкородственное скрещивание (инбридинг) (например, самоопыление у растений) ведет к повышению гомозиготности, что, с одной стороны, способствует закреплению наследственных свойств, а с другой приводит к снижению жизнеспособности, продуктивности и вырождению.

Скрещивание неродственных особей (аутбридинг) позволяет получить гетерозисные гибриды. Если сначала вывести гомозиготные линии, закрепив желательные признаки, а затем провести перекрестное опыление между разными самоопыляющимися линиями, то в результате в ряде случаев появляются высокоурожайные гибриды. Явление повышенной урожайности и жизнеспособности у гибридов первого поколения, полученных при скрещивании родителей чистых линий, называется гетерозисом. Основная причина эффекта гетерозиса — отсутствие проявления вредных рецессивных аллелей в гетерозиготном состоянии. Однако уже со второго поколения эффект гетерозиса быстро снижается.

Межвидовая (отдаленная) гибридизация — скрещивание разных видов. Используется для получения гибридов, сочетающих ценные свойства родительских форм (тритикале — гибрид пшеницы и ржи, мул — гибрид кобылы и осла, лошак — гибрид коня и ослицы). Обычно отдаленные гибриды бесплодны, так как хромосомы родительских видов отличаются настолько, что невозможен процесс конъюгации, в результате чего нарушается мейоз. Преодолеть бесплодие у отдаленных гибридов растений удается с помощью полиплоидии. Восстановление плодовитости у гибридов животных более сложная задача, так как получение полиплоидов у животных невозможно.

Полиплоидия — увеличение числа хромосомных наборов. Полиплоидия позволяет избежать бесплодия межвидовых гибридов. Кроме того, многие полиплоидные сорта культурных растений (пшеница, картофель) имеют более высокую урожайность, чем родственные диплоидные виды. В основе явления полиплоидии лежат три причины: удвоение хромосом в неделящихся клетках, слияние соматических клеток или их ядер, нарушение процесса мейоза с образованием гамет с нередуцированным (двойным) набором хромосом. Искусственно полиплоидию вызывают обработкой семян или проростков растений колхицином. Колхицин разрушает нити веретена деления и препятствует расхождению гомологичных хромосом в процессе мейоза. Мутагенез В естественных условиях частота возникновения мутаций сравнительно невелика. Поэтому в селекции используют индуцированный (искусственно вызванный) мутагенез — воздействие на организм в условиях эксперимента каким-либо мутагенным фактором для возникновения мутации. Делают это с целью изучения влияния фактора на живой организм или получения нового признака. Мутации носят ненаправленный характер, поэтому селекционер сам отбирает организмы с новыми полезными свойствами.

Но́ рма реа́ кции — способность генотипа формировать в онтогенезе, в зависимости от условий среды, разные фенотипы. Она характеризует долю участия среды в реализации признака и определяет модификационную изменчивость вида. Чем шире норма реакции, тем больше влияние среды и тем меньше влияние генотипа в онтогенезе. Один и тот же ген в разных условиях среды может реализоваться в несколько проявлений признака (фенов). В каждом конкретном онтогенезе из спектра проявлений признака реализуется только один. Аналогично один и тот же генотип в разных условиях среды может реализоваться в целый спектр потенциально возможных фенотипов, но в каждом конкретном онтогенезе реализуется только один фенотип. Под наследственной нормой реакции понимают максимально возможную ширину этого спектра: чем он шире, тем шире норма реакции. Фенотипическое значение любого количественного признака (Ф) определяется, с одной стороны, его генотипическим значением (Г), с другой стороны — влиянием среды (С): Ф = Г + С Норма реакции в генетике пределы, в которых в зависимости от условийвнешней среды может изменяться фенотипическое проявление отдельных Генов или Генотипа в целом (см.Фенотип). Термин введён в 1909 В. Иогансеном. Примерами изменений фенотипического проявления геновмогут служить Модификации. Так, у китайской примулы окраска цветков варьирует от белой (при температуре30 °С) до розовой (при 20 °С); у бабочек траурниц, развивающихся летом (при высоких температурах), белаякайма на крыльях четко очерчена, а у развивающихся весной (при пониженных температурах) она размыта.Изменения фенотипа в пределах обусловленной генотипом Н. р. могут возникать в ответ на любыеколебания условий среды, в которой протекает развитие организма. Наблюдаемые изменения часто глубокоменяют фенотип, но не затрагивают генотип, т.к. они обратимы: при возвращении исходных условий средыорганизм либо в том же поколении (загар человека, густота шерсти млекопитающих, окраска цветковпримулы), либо в следующем (окраска крыльев траурницы, число стеблей у одного растения пшеницы), аиногда и в ряду поколений (т. н. длительной модификации) возвращается к первоначальному состоянию, утрачивая признаки, возникшие при изменении условий обитания. Другим доказательством того, чтоизменения в пределах Н. р. происходят без изменений генотипа, служит их наличие и в чистых линиях (См.Чистая линия), т. е. генотипически однородном материале. Более или менее широкая Н. р. вырабатывается впроцессе естественного отбора (См. Естественный отбор); она присуща всем организмам, обеспечивая ихвыживание при сдвигах условий обитания. Т. о., генотип определяет не жёсткую комбинацию строгодетерминированных признаков фенотипа, а именно Н. р. организма при его формировании и развитии.

Объекты соврем молек генетики.раздел общей генетики в котором объектом исследования служат бактерии, микроскопические грибы, актинофаги, вирусы животных и растений, бактериофаги и др. микроорганизмы. До 40-х гг. 20 в. считалось, что, поскольку у микроорганизмов нет ядерного аппарата и мейоза, на них не распространяются Менделя законы и Хромосомная теория наследственности. С начала 40-х гг. микроорганизмы становятся объектом интенсивных генетических исследований. Именно на них были решены многие кардинальные вопросы современные генетики. Так, первое указание на то, что материальным носителем наследственности служит Дезоксирибонуклеиновая кислота (ДНК), было получено в опытах на пневмококках (американские генетики О. Т. Эйвери, К. Мак-Леод и М. Маккарти). Генетические исследования микроорганизмов особенно интенсивно стали развиваться после того, как американские генетики С. Лурия М. Дельбрюк показали на кишечной палочке (Escherichia coli), что и бактерии подчиняются мутационным закономерностям. Ранее существовавшее представление об адекватной, адаптивной изменчивости у бактерий возникло вследствие методической ошибки, заключавшейся в изучении культуры как единицы изменчивости. Был предложен новый принцип изучения изменчивости у бактерий — клональный анализ, т. е. изучение потомства одной клетки — родоначальницы Клона. Важной вехой в развитии Г. м. явился разработанный американскими генетиками Дж. и Э. Ледербергами метод реплик, или отпечатков, позволивший доказать, что мутации возникают у бактерий независимо от условий культивирования, и, кроме того, значительно упростивший приёмы отбора вариантов микроорганизмов с желаемыми свойствами. Оказалось, что в больших популяциях бактериальных клеток мутации возникают спонтанно. В 1946 был открыт половой процесс у бактерий (Конъюгация), что позволило применить для их исследованияГенетический анализ. В результате установлены наличие у бактерий рекомбинации, существование у них генетических групп сцепления и построены генетические карты их хромосом. Почти одновременно был открыт парасексуальный процесс грибов (Г. Понтекорво, Великобритания), что расширило возможности генетического анализа грибов, не имеющих полового цикла размножения. Вскоре в генетические исследования были вовлечены Бактериофаги и др. Вирусы (в частности, вирус табачной мозаики — ВТМ). Был открыт эффект переноса генетической информации от одной бактериальной клетки к другой при посредстве бактериофага — генетической Т рансдукция, что положило начало изучению генетических взаимоотношений в системе «фаг — бактерия» (Дж. Ледерберг, Н. Зиндер, США). Вслед за тем была обнаружена рекомбинация у фагов (А. Херши и М. Дельбрюк, США). Если использование бактерий в качестве объекта генетических исследований резко повысило разрешающую способность генетическиого анализа, то благодаря фагам удалось перейти к изучению явлений наследственности на молекулярном уровне. Большое значение имели исследования ВТМ (немецкие генетики Г. Шустер и А. Гирер), позволившие вызвать генетический эффект в опытах с чистой рибонуклеиновой кислотой (РНК), которая сохраняла инфекционность и при нанесении на листья табака вызывала в клетках образование полноценных частиц ВТМ.

Трансформация бактерий. (В 1928 г впервые получили доказательство возможности передачи наследственных задатков от одной бактерии к другой. Вводили мышам вирулентный капсульный и авирулентный бескапсульный штаммы пневмококков. При введении вирулентного штамма мыши заболели пневмонией и погибли. При введении авирулентного штамма – живые. При введении вирулентного капсульного штамма, убитого нагреванием, мыши также не погибали. Ввели смесь живой культуры авирулентного бескапсульного штамма со штаммом убитого нагреванием вирулентного капсульного – мыши заболели пневмонией и погибли. Из крови погибших животных были выделены бактерии, кот обладали вирулентностью и были способны образовать капсулу. Живые бактерии авирулентного бескапсульного штамма трансформировались – преобрели свойства убитых болезнетворных бактерий. Трансформирующий фактор – ДНК.). 2) Размножение вирусов. (Вирусы репродуцируются только внутри клетки, какого – то организма и используют для этого её ферментные системы и другие необходимые компоненты. Круг хозяев для определённого вируса может быть ограничен. Вирусы могут инфицировать одноклеточные микроорганизмы – микоплазмы, бактерии и водоросли, а также клетки высших растений и животных.)

Трансдукцие й называют передачу ДНК от клетки-донора клетке-реци­пиенту при участии бактериофагов. Обычно при этом фаг переносит лишь небольшой фрагмент ДНК хозяина. Различают два вида транс-дукции: неспецифическую (общую), при которой может быть перенесен любой фрагмент ДНК хозяина, и специфическую, затрагивающую лишь строго определенные фрагменты ДНК. При неспецифической трансдук-ции ДНК клетки-хозяина включается в частицу фага либо дополнитель­но к его собственному геному, либо вместо него, тогда как при специ-фической трансдукции некоторые гены фага замещаются генами хозяина. В обоих случаях трансдуцирующие фаги, как правило, де­фектны - например, они часто теряют способность лизировать клетку-хозяина. Передача признаков путем трансдукции была обнаружена у многих бактерий, в том числе у видов Salmonella, Escherichia, Shigella, Bacillus, Pseudomonas, Staphylococcus, Vibrio и Rhizobium. Но не все фаги могут осуществлять трансдукцию, и не во все бактерии таким путем может быть перенесена ДНК.

 

<== предыдущая лекция | следующая лекция ==>
 | Организация и основы деятельности.
Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.008 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал