![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Функции уровней ⇐ ПредыдущаяСтр 5 из 5
Физический (1) уровень (Physical Layer) - это самый нижний уровень модели, который отвечает за кодирование передаваемой информации в уровни сигналов, принятые в используемой среде передачи, и обратное декодирование. Здесь же определяются требования к соединителям, разъемам, электрическому согласованию, заземлению, защите от помех и т.д. На физическом уровне работают такие сетевые устройства, как трансиверы, репитеры и ре-питерные концентраторы [4, 5]. Канальный (2) уровень или уровень управления линией передачи (Data link Layer) отвечает за формирование пакетов (кадров) стандартного для данной сети (Ethernet, Token-Ring, FDDI) вида, включающих начальное и конечное управляющие поля. Здесь же производится управление доступом к сети, обнаруживаются ошибки передачи путем подсчета контрольных сумм, и производится повторная пересылка приемнику ошибочных пакетов. Канальный уровень делится на два подуровня: верхний LLC и нижний MAC. На канальном уровне работают такие промежуточные сетевые устройства, как, например, коммутаторы. Сетевой (3) уровень (Network Layer) отвечает за адресацию пакетов и перевод логических имен (логических адресов, например, IP-адресов или IPX-адресов) в физические сетевые МАС-адреса (и обратно). На этом же уровне решается задача выбора маршрута (пути). по которому пакет доставляется по назначению (если в сети имеется несколько маршрутов). На сетевом уровне действуют такие сложные промежуточные сетевые устройства, как маршрутизаторы. Транспортный (4) уровень (Transport Layer) обеспечивает доставку пакетов без ошибок и потерь, а также в нужной последовательности. Здесь же производится разбивка на блоки передаваемых данных, помещаемые в пакеты, и восстановление принимаемых данных из пакетов. Доставка пакетов возможна как с установлением соединения (виртуального канала), так и без. Транспортный уровень является пограничным и связующим между верхними тремя, сильно зависящими от приложений, и тремя нижними уровнями, сильно привязанными к конкретной сети. Сеансовый (5) уровень (Session Layer) управляет проведением сеансов связи (то есть устанавливает, поддерживает и прекращает связь). Этот уровень предусматривает три режима установки сеансов: симплексный (передача данных в одном направлении), полудуплексный (передача данных поочередно в двух направлениях) и полнодуплексный (передача данных одновременно в двух направлениях). Сеансовый уровень может также вставлять в поток данных специальные контрольные точки, которые позволяют контролировать процесс передачи при разрыве связи. Этот же уровень распознает логические имена абонентов, контролирует предоставленные им права доступа. Представительский (6) уровень (Presentation Layer) или уровень представления данных определяет и преобразует форматы данных и их синтаксис в форму, удобную для сети, то есть выполняет функцию переводчика. Здесь же производится шифрование и дешифрирование данных, а при необходимости - и их сжатие. Стандартные форматы существуют для текстовых файлов (ASCII, EBCDIC, HTML), звуковых файлов (MIDI, MPEG, WAV), рисунков (JPEG. GIF, TIFF), видео (AVI). Все преобразования форматов делаются на представительском уровне. Если данные передаются в виде двоичного кода, то преобразования формата не требуется. Прикладной (7) уровень (Application Layer) или уровень приложений обеспечивает услуги, непосредственно поддерживающие приложения пользователя, например, программные средства передачи файлов, доступа к базам данных, средства электронной почты, службу регистрации на сервере. Этот уровень управляет всеми остальными шестью уровнями. Большинство функций двух нижних уровней модели (1 и 2) обычно реализуются ап-паратно (часть функций уровня 2 - программным драйвером сетевого адаптера). Именно на этих уровнях определяется скорость передачи и топология сети, метод управления обменом и формат пакета, то есть то, что имеет непосредственное отношение к типу сети, например, Ethernet, Token-Ring, FDDI, lOOVG-AnyLAN. Более высокие уровни, как правило, не работают напрямую с конкретной аппаратурой, хотя уровни 3, 4 и 5 еще могут учитывать ее особенности. Уровни 6 и 7 никак не связаны с аппаратурой, замены одного типа аппаратуры на другой они не замечают. № 3. Технология сетей ATM Технология ATM (Asynchronous Transfer Mode - режим асинхронной передачи) является одной из самых перспективных технологий построения высокоскоростных сетей [7]. Она обеспечивает максимально эффективное использование полосы пропускания каналов связи при передаче различного рода информации: голоса, видеоинформации, данных от самых разных типов устройств - асинхронных терминалов, узлов сетей передачи данных, локальных сетей и т.д. (к таким сетям относятся практически все ведомственные сети). Сети, в которых используется ATM-технология, называются ATM-сетями. Эффективность АТМ-технологии заключается в возможности применения различных интерфейсов для подключения пользователей к сетям ATM. Основные особенности АТМ-технологии [8]. 1. ATM - это асинхронная технология, так как пакеты небольшого размера, назы 2. Технология ATM ориентирована на предварительное (перед передачей информа 3. По технологии ATM допускается совместная передача различных видов сигналов, 4. Поскольку передаваемая информация разбивается на ячейки фиксированного раз 5. ATM-технология обладает способностью к наращиваемости, т.е. к увеличению 6. Построение ATM-сетей и реализация соответствующих технологий возможны на 7. ATM-технологии могут быть реализованы в ATM-сетях практически любой топо Главное отличие АТМ-технологии от других телекоммуникационных технологий заключается в высокой скорости передачи информации (в перспективе - до 10 Гбит/с), причем привязка к какой-либо одной скорости отсутствует. Важным является и то обстоятельство, что ATM-сети совмещают функции глобальных и локальных сетей, обеспечивая идеальные условия для «прозрачной» транспортировки различных видов трафика и доступа к услугам и службам взаимодействующих с сетью АТМ-сетей. ATM-технология допускает использование как постоянных (PVC), так и коммутируемых виртуальных каналов (SVC). Постоянные каналы РУС представляют собой соединение (после предварительной настройки) между взаимодействующими пользователями сети, которое существует постоянно. Устройства, связываемые постоянным виртуальным каналом, должны вести довольно громоздкие таблицы маршрутизации, отслеживающие все соединения в сети. Следовательно, рабочие станции, соединенные PVC, должны иметь таблицы маршрутизации всех остальных станций сети, что нерационально и может вызывать задержки в передаче. Коммутируемые виртуальные каналы (SVC) позволяют устранить необходимость ведения сложных таблиц маршрутизации и таким образом повысить эффективность функционирования сети. Здесь соединение устанавливается динамически, при этом используются ATM-маршрутизаторы. В отличие от традиционных маршрутизаторов, которые требуют физического подключения сетевого сегмента к каждому из своих портов, в АТМ-маршрутизаторах используется не физическая архитектура с ориентацией на соединения, а виртуальная сетевая архитектура, ориентированная на протоколы. Такие маршрутизаторы необходимы и удобны для создания виртуальной сети, для которой характерной является возможность переключения пользователей, находящихся в любой точке сети, с одного сегмента на другой с сохранением виртуального адреса рабочей группы, что упрощает администратору сети задачу учета изменений списка пользователей. ATM-технология способна обрабатывать трафики различных классов. В существующих спецификациях предусмотрены четыре класса трафика, которые могут быть в режиме ATM [8]. • Класс А - синхронный трафик с постоянной скоростью передачи и с предваритель • Класс В - синхронный трафик с переменной скоростью передачи и с предвари • Класс С - асинхронный трафик с переменной скоростью передачи и с предвари • Класс D - асинхронный трафик с переменной скоростью передачи и без установле
Соединение между двумя оконечными пунктами сети (напомним, что АТМ-технология ориентирована на предварительное установление соединения) возникает с того момента, когда один из них передает через UNI запрос в сеть. Этот запрос через цепочку ATM-коммутаторов отправляется в пункт назначения для интерпретации. Если узел-адресат принимает запрос на соединение, то в ATM-сети между двумя пунктами организуется виртуальный канал. UNI-устройства этих пунктов и промежуточные узлы сети (т.е. ATM--коммутаторы) обеспечивают правильную маршрутизацию ячеек за счет того, что каждая ATM-ячейка содержит два поля - идентификатор виртуального пути (VPI - Virtual Path Identifier) и идентификатор виртуального канала (VCI - Virtual Circuit Identifier). Информация, содержащаяся в полях VPI и VCI ATM-ячейки, используется для однозначного решения задачи маршрутизации даже в случае, если у оконечной системы организовано несколько виртуальных связей. Движущей силой развития технологии ATM является ее эффективность в обслуживании низкоскоростных приложений и возможность работы на сравнительно низких скоростях (от 2 Мбит/с). Говорить о «конкуренции» сетей FR и ATM неправомочно, так как в настоящее время FR является основным интерфейсом доступа к сетям ATM, позволяющим обеспечивать передачу по сети ATM разнородного трафика, динамически распределяя полосу пропускания. Совмещение разнородных телекоммуникационных сетей, построенных на базе различных технологий (Х.25, FR, IP и др.), для предоставления пользователям всего спектра услуг в настоящее время возможно только при использовании технологии ATM. Возможности этой технологии по совмещению различных ТСС возрастают, несмотря на их существенные различия, главные из которых состоят: в приспособленности к передаче разнородной информации (данных, голоса, видеоинформации); в возможности полного использования имеющейся полосы пропускания и адаптации к качеству каналов связи; в наличии и качестве интерфейсного оборудования связи с другими сетями; в степени рассредоточенности элементов сети, а также в степени распространенности в том или ином регионе.
|