Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Определения. Допустим, у нас есть бесконечно малые при одном и том же величины и (либо, что не важно для определения

Допустим, у нас есть бесконечно малые при одном и том же величины и (либо, что не важно для определения, бесконечно малые последовательности).

§ Если , то — бесконечно малая высшего порядка малости, чем . Обозначают .

§ Если , то — бесконечно малая низшего порядка малости, чем . Соответственно .

§ Если (предел конечен и не равен 0), то и являются бесконечно малыми величинами одного порядка малости.

Это обозначается как или (в силу симметричности данного отношения).

§ Если (предел конечен и не равен 0), то бесконечно малая величина имеет -й порядок малости относительно бесконечно малой .

Для вычисления подобных пределов удобно использовать правило Лопиталя.

[править] Примеры сравнения

§ При величина имеет высший порядок малости относительно , так как . С другой стороны, имеет низший порядок малости относительно , так как .

С использованием О -символики полученные результаты могут быть записаны в следующем виде .

§ то есть при функции и являются бесконечно малыми величинами одного порядка.

В данном случае справедливы записи и

§ При бесконечно малая величина имеет третий порядок малости относительно , поскольку , бесконечно малая — второй порядок, бесконечно малая — порядок 0, 5.

 

Следствие 1. Если и , то .

Следствие 2. Если и c= const, то .

Теорема 3. Отношение бесконечно малой функции α (x) на функцию f(x), предел которой отличен от нуля, есть бесконечно малая функция.

Доказательство. Пусть . Тогда 1 /f(x) есть ограниченная функция. Поэтому дробь есть произведение бесконечно малой функции на функцию ограниченную, т.е. функция бесконечно малая.

 

<== предыдущая лекция | следующая лекция ==>
Семен Новопрудский | Глава третья. Силуэт.
Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.008 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал