Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Физический уровень. Cтек протоколов стандарта IEEE 802.11 соответствует общей структуре стандартов комитета 802, то есть состоит из физического уровня и канального уровня с






Cтек протоколов стандарта IEEE 802.11 соответствует общей структуре стандартов комитета 802, то есть состоит из физического уровня и канального уровня с подуровнями управления доступом к среде MAC (Media Access Control) и логической передачи данных LLC (Logical Link Control). Как и у всех технологий семейства 802, технология 802.11 определяется двумя нижними уровнями, то есть физическим уровнем и уровнем MAC, а уровень LLC выполняет свои стандартные общие для всех технологий LAN функции (рис. 54).

 

Рис. 54. Стек протоколов IEEE 802.11

 

На физическом уровне существует несколько вариантов спецификаций, которые отличаются используемым частотным диапазоном, методом кодирования и как следствие - скоростью передачи данных. Все варианты физического уровня работают с одним и тем же алгоритмом уровня MAC, но некоторые временные параметры уровня MAC зависят от используемого физического уровня.

В основе всех беспроводных протоколов семейства 802.11 лежит технология расширения спектра (Spread Spectrum, SS).

Спектром сигнала называется область частот, составляющих данный сигнал.

Такая технология подразумевает, что первоначально узкополосный (в смысле ширины спектра) полезный информационный сигнал при передаче преобразуется таким образом, что его спектр оказывается значительно шире спектра первоначального сигнала. То есть спектр сигнала как бы «размазывается» по частотному диапазону. Одновременно с расширением спектра сигнала происходит и перераспределение спектральной энергетической плотности сигнала — энергия сигнала также «размазывается» по спектру. В результате максимальная мощность преобразованного сигнала оказывается значительно ниже мощности исходного сигнала. При этом уровень полезного информационного сигнала может в буквальном смысле сравниваться с уровнем естественного шума. В результате сигнал становится в каком то смысле «невидимым» — он просто теряется на уровне естественного шума.

Собственно, именно в изменении спектральной энергетической плотности сигнала и заключается идея расширения спектра. Если подходить к проблеме передачи данных традиционным способом, как это делается в радио эфире, где каждой радиостанции отводится свой диапазон вещания, то неизбежно придется столкнуться с проблемой ограничения радиодиапазона, предназначенного для совместного использования. Поэтому необходимо найти такой способ передачи информации, при котором пользователи могли бы сосуществовать в одном частотном диапазоне и при этом не мешать друг другу. Именно эту задачу и решает технология расширения спектра.

Исходный стандарт 802.11 определяет две такие технологии:

• технология расширения спектра путем скачкообразной перестройки частоты (FHSS) в диапазоне 2, 4 ГГц.

• технология широкополосной модуляции с расширением спектра методом прямой последовательности (DSSS) в диапазоне 2, 4 ГГц.

В беспроводных локальных сетях технологии FHSS передача ведется с постоянной сменой несущей в пределах широкого диапазона частот. В результате мощность сигнала распределяется по всему диапазону, и прослушивание какой-то определенной частоты дает только небольшой шум. Последовательность несущих частот является псевдослучайной, известной только передатчику и приемнику. Попытка подавления сигнала в каком-то узком диапазоне также не слишком ухудшает сигнал, так как подавляется только небольшая часть информации. Идею этого метода иллюстрирует рис. 55.

В течение фиксированного интервала времени передача ведется на неизменной несущей частоте. На каждой несущей частоте для передачи дискретной информации применяются стандартные методы модуляции, такие как частотная или фазовая. Чтобы приемник синхронизировался с передатчиком, в начале каждого периода передачи в течение некоторого времени передаются синхробиты. Так что полезная скорость этого метода кодирования оказывается меньше из-за постоянных накладных расходов на синхронизацию.


Рис. 55. Расширение спектра скачкообразной перестройкой частоты

 

Несущая частота меняется в соответствии с номерами частотных подканалов, вырабатываемых алгоритмом псевдослучайных чисел. Псевдослучайная последовательность зависит от некоторого параметра, который называют начальным числом. Если приемнику и передатчику известны алгоритм и значение начального числа, то они меняют частоты в одинаковой последовательности, называемой последовательностью псевдослучайной перестройки частоты.

Если частота смены подканалов ниже, чем скорость передачи данных в канале, то такой режим называют медленным расширением спектра; в противном случае мы имеем дело с быстрым расширением спектра.

Метод быстрого расширения спектра более устойчив к помехам, поскольку узкополосная помеха, которая подавляет сигнал в определенном подканале, не приводит к потере бита, так как его значение повторяется несколько раз в различных частотных подканалах. В этом режиме не проявляется эффект межсимвольной интерференции, потому что ко времени прихода задержанного вдоль одного из путей сигнала система успевает перейти на другую частоту.

Метод медленного расширения спектра таким свойством не обладает, но зато он проще в реализации и сопряжен с меньшими накладными расходами.

Беспроводные локальные сети FHSS поддерживают скорости передачи 1 и 2 Мбит/с. Устройства FHSS делят полосу частот от 2, 402 до 2, 480 ГГц на 79 неперекрывающихся каналов. Ширина каждого из 79 каналов составляет 1 МГц.

В методе прямого последовательного расширения спектра DSSS также используется весь частотный диапазон, выделенный для одной беспроводной линии связи. В отличие от метода FHSS, весь частотный диапазон занимается не за счет постоянных переключений с частоты на частоту, а за счет того, что каждый бит информации заменяется N-битами, так что тактовая скорость передачи сигналов увеличивается в N раз. А это, в свою очередь, означает, что спектр сигнала также расширяется в N раз. Достаточно соответствующим образом выбрать скорость передачи данных и значение N, чтобы спектр сигнала заполнил весь диапазон.

Цель кодирования методом DSSS та же, что и методом FHSS, - повышение устойчивости к помехам. Узкополосная помеха будет искажать только определенные частоты спектра сигнала, так что приемник с большой степенью вероятности сможет правильно распознать передаваемую информацию.

Код, которым заменяется двоичная единица исходной информации, называется расширяющей последовательностью, а каждый бит такой последовательности - чипом.

Соответственно, скорость передачи результирующего кода называют чиповой скоростью. Двоичный нуль кодируется инверсным значением расширяющей последовательности. Приемники должны знать расширяющую последовательность, которую использует передатчик, чтобы понять передаваемую информацию.

Количество битов в расширяющей последовательности определяет коэффициент расширения исходного кода. Как и в случае FHSS, для кодирования битов результирующего кода может использоваться любой вид модуляции.

Чем больше коэффициент расширения, тем шире спектр результирующего сигнала и выше степень подавления помех. Но при этом растет занимаемый каналом диапазон спектра. Обычно коэффициент расширения имеет значение от 10 до 100.

Очень часто в качестве значения расширяющей последовательности берут последовательность Баркера (Barker), которая состоит из 11 бит: 10110111000. Если передатчик использует эту последовательность, то передача трех битов 110 ведет к передаче следующих битов:

 

10110111000 10110111000 01001000111.

 

Последовательность Баркера позволяет приемнику быстро синхронизироваться с передатчиком, то есть надежно выявлять начало последовательности. Приемник определяет такое событие, поочередно сравнивая получаемые биты с образцом последовательности. Действительно, если сравнить последовательность Баркера с такой же последовательностью, но сдвинутой на один бит влево или вправо, мы получим меньше половины совпадений значений битов. Значит, даже при искажении нескольких битов с большой долей вероятности приемник правильно определит начало последовательности, а значит, сможет правильно интерпретировать получаемую информацию.

Метод DSSS в меньшей степени защищен от помех, чем метод быстрого расширения спектра, так как мощная узкополосная помеха влияет на часть спектра, а значит, и на результат распознавания единиц или нулей.

Беспроводные локальные сети DSSS используют каналы шириной 22 МГц, благодаря чему многие WLAN могут работать в одной и той же зоне покрытия. В Северной Америке и большей части Европы, в том числе и в России, каналы шириной 22 МГц позволяют создать в диапазоне 2, 4- 2, 483 ГГц три неперекрывающихся канала передачи. Эти каналы показаны на рис. 56.

 

Рис. 56. Каналы, используемые в технологии DSSS

 

Передача данных в беспроводных локальных сетях может осуществляться в диапазоне инфракрасных волн. Средой передачи являются инфракрасные волны диапазона 850 нм, которые генерируются либо полупроводниковым лазерным диодом, либо светодиодом. Так как инфракрасные волны не проникают через стены, область покрытия LAN ограничивается зоной прямой видимости. Стандарт предусматривает три варианта распространения излучения: ненаправленную антенну, отражение от потолка и фокусное направленное излучение. В первом случае узкий луч рассеивается с помощью системы линз. Фокусное направленное излучение предназначено для организации двухточечной связи, например между двумя зданиями.

Из всех существующих стандартов беспроводной передачи данных IEEE 802.11 на практике используются четыре стандарта: 802.11a, 802.11b, 802.11g и 802.11n.

Стандарт IEEE 802.11a имеет большую ширину полосы из семейства стандартов 802.11 при скорости передачи данных до 54 Мбит/с. В отличие от базового стандарта, ориентированного на область частот 2, 4 ГГц, спецификациями 802.11a предусмотрена работа в диапазоне 5 ГГц. В качестве метода модуляции сигнала выбрано ортогональное частотное мультиплексирование (OFDM). Суть этого механизма состоит в том, что весь доступный частотный диапазон разбивается на достаточно много поднесущих (от нескольких сот до тысяч). Одному каналу связи (приемнику и передатчику) назначают для передачи несколько таких несущих, выбранных из множества по определенному закону. Передача ведется одновременно по всем поднесущим, т. е. в каждом передатчике исходящий поток данных разбивается на N субпотоков, где N - число поднесущих, назначенных данному передатчику.

Стандарт IEEE 802.11b завоевал наибольшую популярность у производителей оборудования для беспроводных сетей благодаря высокой скорости передачи данных (до 11 Мбит/с), а также ориентации на диапазон 2, 4 ГГц. Поскольку оборудование, работающее на максимальной скорости 11 Мбит/с, имеет меньший радиус действия, чем на более низких скоростях, то стандартом 802.11b предусмотрено автоматическое снижение скорости при ухудшении качества сигнала.

Стандарт IEEE 802.11g является логическим развитием 802.11b и предполагает передачу данных в том же частотном диапазоне. Кроме того, стандарт 802.11g полностью совместим с 802.11b, то есть любое устройство 802.11g должно поддерживать работу с устройствами 802.11b. Максимальная скорость передачи в стандарте 802.11g составляет 54 Мбит/с, поэтому на сегодня это наиболее перспективный стандарт беспроводной связи.

Стандарт 802.11n был утверждён 11 сентября 2009 организацией IEEE (Institute of Electrical and Electronics Engineers). Теоретически 802.11n способен обеспечить скорость передачи данных до 600 Мбит/с. Разработчики спецификации 802.11n позаботились о том, чтобы компоненты на её базе сохраняли совместимость с устройствами стандарта 802.11b или 802.11g в диапазоне 2, 4 ГГц и с устройствами 802.11a — в диапазоне 5 ГГц.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал