Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Одиннадцатеричная система счисления употребляется в языке для устного счета народом маори – коренным населением Новой Зеландии.







Двенадцатеричная система счисления. На ее широкое использование в прошлом явно указывают названия числительных во многих языках, а также сохранившиеся в ряде стран способы отсчета времени, денег и соотношения между некоторыми единицами измерения. Год состоит из 12 месяцев, а половина суток состоит из 12 часов. В русском языке счет часто идет дюжинами, чуть реже гроссами (по 144=122), но в старину использовалось и слово для 1728=123. В английском языке есть особые (а не образованные по общему правилу) слова eleven (11) и twelve (12). Английский фунт состоит из 12 шиллингов.

Шестнадцатеричная система счисления. Использует шестнадцать цифр – 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9 в их обычном смысле, а затем B=11, C=12, D=13, E=14, F=15. Также использует символы «+» и «–» для обозначения знака числа и запятую (точку) для разделения целой и дробной частей числа. Внедрена американской корпорацией IBM. Широко используется в программировании для IBM-совместимых компьютеров. С другой стороны, в некоторых языках сохранились и следы использования этой системы счисления в прошлом. Например, в романских языках (испанском, французском и др.) числительные от 11 до 16 образуются по одному правилу, а от 17 до 19 – по другому. А в русском языке известен пуд, равный 16 килограммам. ДВЕНАДЦАТИРИЧНАЯ И ВОСЬМЕРИЧНАЯ СИСТЕМЫ СЧИСЛЕНИЯ

Хотя десятичная система счисления является наиболее широко применимой, это отнюдь не означает, что она самая лучшая. Широкое распространение во многом объясняется тем анатомическим обстоятельством, что у нас на руках и ногах по десять пальцев. Что же касается позиционного принципа и цифровых обозначений, то они с равным успехом могут быть приспособлены к системе счисления с любым основанием, независимо от того, равно ли оно 2, 10 или какому-нибудь другому целому положительному числу, кроме единицы. Например, подставив в полиномиальное представление 7 x 2 + 6 x 1 + 5 x 0 + 4 x –1 + 3 x –2 вместо x значение 10, мы получим число 765, 43 в нашей обычной десятичной системе. Но без малейшего ущерба для позиционного принципа обозначения целых чисел и дробей вместо x можно подставить и любое другое целое положительное число. Вместо числа 10 в качестве основания системы счисления чаще других предлагалось использовать числа 8 и 12. Системы, получающиеся при таких заменах, известны под названием восьмеричной и двенадцатеричной. В восьмеричной системе вместо переменной x в полиномиальном представлении следует подставить 8, и тогда число, равное в десятичной системе 765, 43, в восьмеричной системе окажется равным (8 2) + 6(8 1) + 5(8 0) + 4(8 –1) + 3(8 –2), т.е. числу. В двенадцатеричной системе то же самое полиномиальное представление при x = 12 дает (12 2) + 6(12 1) + 5(12 0) + 4(12 –1) + 3(12 –2), или в наших обычных обозначениях. Что касается вычислений, то они во всех трех системах счисления, десятичной, восьмеричной и двенадцатиричной, производятся практически одинаково и с одной и той же легкостью. Различие в основном заключается в таблицах сложения и умножения, поскольку они изменяются от одной системы счисления к другой. Например, сумма семь плюс семь равна сумме восемь плюс шесть в восьмеричной системе, десять плюс четыре – в десятичной и двенадцать плюс два – в двенадцатиричной. Символически эти суммы и произведения можно записать следующим образом:

Мы видим, что переход от десятичной системы к восьмеричной или двенадцатиричной действительно требует полного пересмотра таблиц сложения и умножения; это объясняет, почему предложения о переходе к этим системам счисления не получили широкого признания. Преимущества, которые сулит этот переход, сводятся на нет сопряженными с ним трудностями. Главные преимущества восьмеричной и двенадцатиричной систем счисления связаны с делимостью их оснований. Рассматривая только целые числа, меньшие половины основания (поскольку ни одно число не может быть делителем основания, если это число больше половины основания, но меньше его), нетрудно понять, что число 10 имеет два неделителя – числа 3 и 4, тогда как в восьмеричной системе единственный неделитель, меньший половины основания, есть число 3, а в двенадцатиричной системе единственный неделитель основания равен числу 5. Иначе говоря, преимущество числа 12 как основания системы счисления заключается в том, что оно имеет делителями числа 2, 3, 4 и 6, тогда как число 10 имеет делителями числа 2 и 5. Число 8 имеет делителями только числа 2 и 4, однако его основное преимущество перед другими в том, что непрерывное деление пополам неизменно приводит к «одноместному» дробному представлению в полиномиальной форме. Например, если 8 разделить на 210, то результат окажется в точности равным (0, 004)8, тогда как если 12 разделить на 210, то получится (приближенно) (0, 0183)12, а при делении на 210 числа 10 результат (также приближенный) будет равным (0, 0097656)10.

В метрологии большое значение имеет факторизуемость (разложимость на множители) числа, вот почему 8 и 12 играют столь заметную роль в неметрических системах весов и мер. На американских фондовых биржах дроби обычно выражают в восьмых долях, а время делится на 12 и существенно использует деление единиц на 60 частей. Особая роль числа 60 в наших измерениях времени и углов связана с тем, что около четырех тысяч лет назад древние вавилоняне осознали, что число 60 имеет много делителей, и выбрали его не только за основу своих весов и мер, но и своей системы счисления. Позиционный принцип вошел в обиход в связи с шестидесятиричной, а не десятичной системой. Но основание 60 обладает одним серьезным недостатком: оно слишком велико для того, чтобы его можно было использовать в современной цифровой полиномиальной форме, т.к. для этого потребовалось бы 60 различных символов, которые обозначали бы первые шестьдесят неотрицательных целых чисел. Кроме того, таблицы сложения и умножения включали бы числа от 1 до 59, что потребовало бы чрезмерно большой нагрузки на память. Этим же недостатком обладает и любое другое основание большее 12, поэтому двенадцатиричная система является наибольшим практически возможным основанием. Сама двенадцатиричная система требует введения двух новых цифр – для обозначения чисел 10 и 11. Для этой цели были предложены буквы t и e. Преимущество двоичной системы в том, что для нее необходимо всего лишь две цифры, но она располагается на другом конце шкалы относительно шестидесятиричной системы, для большинства практических целей основание ее слишком мало и поэтому число знаков при записи чисел в двоичной системе оказывается слишком большим. (См. предыдущий раздел.) Числа 8, 10 и 12 очень близки к оптимальной величине основания системы счисления, и вычисления в восьмеричной, десятичной и двенадцатиричной системах выполняются сравнительно легко.

Аргументы в пользу двенадцатиричной системы счисления не следует путать с аргументами в защиту двенадцатиричной монетарной и метрологической систем. Уже вавилоняне прекрасно понимали желательность согласованности системы счисления и метрологической системы. Однако продолжительное использование десятичной системы вместе с двенадцатиричными и шестидесятидесятиричными единицами измерения затушевало проблему их несогласованности. Более того, возникла тенденция преувеличивать те трудности, которые могла бы породить любая попытка их унифицировать. Внутренняя согласованность, по-видимому, играет более важную роль, чем любой выбор единого основания систем, будь то 8, 10 или 12. Во времена Великой французской революции, на заседаниях Революционной комиссии по весам и мерам, высказывались мнения о введения двенадцатиричных систем мер и весов, но окончательное решение склонилось в пользу унификации мер и весов на основе десятичной системы счисления. Результатом такого решения стала метрическая система, получившая ныне почти всеобщее признание.

В тех случаях, когда вместе с десятичной системой счисления параллельно используются двенадцатиричные и другие единицы измерения, неизбежно возникает непростая задача перевода из одной системы единиц в другую.

Следует иметь в виду, что трудности перехода от одной системы счисления к другой не имеют никакого отношения к преимуществам или недостаткам выполнения арифметических операций целиком в рамках одной системы, будь то восьмеричная, десятичная или двенадцатиричная система. Десятичная система не может не признать небольших преимуществ двух других систем: восьмеричная система имеет меньшие по объему таблицы сложения и умножения и особенно хорошо приспособлена к делению на 2, а двенадцатиричная удобнее для выполнения операции деления и представления простых дробей. Достаточны ли эти преимущества для того, чтобы настаивать на придании универсального характера той или иной системе счисления, – вопрос достаточно спорный, однако основанное в 1944 Двенадцатиричное общество Америки стало центром, объединяющим активную деятельность тех, кто хотел бы, чтобы число 12 играло столь же важную роль, какую во многих цивилизациях на протяжении прошлых полдюжины тысячелетий играло число 10.

Восьмеричная система счисления.


При внешнем (вне ЭВМ) представлении числовой информации применять двоичную систему счисления с ее громоздкими записями неудобно. В этом случае часто используется восьмеричная система.
В восьмеричной системе числа записываются с помощью восьми цифр: 0, 1, 2, 3, 4, 5, 6, 7, а сама восьмерка числом 10.Удобство восьмеричной системы счисления заключается в том, что переход от восьмеричной к двоичной очень прост: достаточно каждую восьмеричную цифру заменить ее двоичным представлением (двоичной триадой)в соответствии с приведенной ниже таблицей.

восьмеричная система счисления                
двоичная система счисления                

Например, 5028 = 101 000 0102
Достаточно прост и обратный переход от двоичной с/с к восьмеричной. Для этого в двоичной записи числа нужно выделить триады (влево и вправо от десятичной точки) и заменить каждую триаду соответствующей восьмеричной цифрой. В случае необходимости неполные триады дополняются нулями.
Например, 1 111 1102 = 001 111 1102 = 1768

Шестнадцатеричная система счисления

При подготовке информации для современных ЭВМ и описания характера их работы используется шестнадцатеричная с/с. Для записи чисел в этой системе необходимо располагать шестнадцатью различными символами.
Очевидно, что для первых десяти цифр можно использовать цифры от нуля до девяти - 0, 1, 2,..., 9. Для обозначения остальных используются буквы латинского алфавита - A, B, C, D, E, F, которые соответственно обозначают 10, 11, 12, 13, 14 и 15. Переход от шестнадцатиричной к двоичной так же прост, как от восьмеричной к двоичной. Только на этот раз каждую шестнадцатеричную цифру нужно заменить соответствующей двоичной тетрадой (см. таблицу).

десятичная система счисления   < 1                            
шестнадцатеричная система счисления                     A B C D E F
двоичная система счисления               > 0111                

Например, B316 = 1011 00112

Так как все рассмотренные с/с являются позиционными, то в них работают одни и те же правила (алгоритмы) сложения, вычитания, умножения и деления, и они такие же, что и в десятичной системе счисления.

Как порождаются целые числа в позиционных системах счисления?

В каждой системе счисления цифры упорядочены в соответствии с их значениями: 1 больше 0, 2 больше 1 и т.д.

Продвижением цифры называют замену её следующей по величине.

Продвинуть цифру 1 значит заменить её на 2, продвинуть цифру 2 значит заменить её на 3 и т.д. Продвижение старшей цифры (например, цифры 9 в десятичной системе) означает замену её на 0. В двоичной системе, использующей только две цифры – 0 и 1, продвижение 0 означает замену его на 1, а продвижение 1 – замену её на 0.

Целые числа в любой системе счисления порождаются с помощью Правила счета

Для образования целого числа, следующего за любым данным целым числом, нужно продвинуть самую правую цифру числа; если какая-либо цифра после продвижения стала нулем, то нужно продвинуть цифру, стоящую слева от неё.

Применяя это правило, запишем первые десять целых чисел

  • в двоичной системе: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001;
  • в троичной системе: 0, 1, 2, 10, 11, 12, 20, 21, 22, 100;
  • в пятеричной системе: 0, 1, 2, 3, 4, 10, 11, 12, 13, 14;
  • в восьмеричной системе: 0, 1, 2, 3, 4, 5, 6, 7, 10, 11.

Какие системы счисления используют специалисты для общения с компьютером?

Кроме десятичной широко используются системы с основанием, являющимся целой степенью числа 2, а именно>:

  • двоичная (используются цифры 0, 1);
  • восьмеричная (используются цифры 0, 1,..., 7);
  • шестнадцатеричная (для первых целых чисел от нуля до девяти используются цифры 0, 1,..., 9, а для следующих чисел — от десяти до пятнадцати – в качестве цифр используются символы A, B, C, D, E, F).

Полезно запомнить запись в этих системах счисления первых двух десятков целых чисел:

10 - я 2 - я 8 - я 16 - я
       
       
       
       
       
       
       
       
       
       

 

10 - я 2 - я 8 - я 16 - я
      A
      B
      C
      D
      E
      F
       
       
       
       

 

!

Из всех систем счисления особенно проста и поэтому интересна для технической реализации в компьютерах двоичная система счисления.

Почему люди пользуются десятичной системой, а компьютеры — двоичной?

Люди предпочитают десятичную систему, вероятно, потому, что с древних времен считали по пальцам, а пальцев у людей по десять на руках и ногах. Не всегда и не везде люди пользуются десятичной системой счисления. В Китае, например, долгое время пользовались пятеричной системой счисления.

А компьютеры используют двоичную систему потому, что она имеет ряд преимуществ перед другими системами:

  • для ее реализации нужны технические устройства с двумя устойчивыми состояниями (есть ток — нет тока, намагничен — не намагничен и т.п.), а не, например, с десятью, — как в десятичной
  • представление информации посредством только двух состояний надежно и помехоустойчиво;
  • возможно применение аппарата булевой алгебры для выполнения логических преобразований информации;
  • двоичная арифметика намного проще десятичной.

Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.008 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал