Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Теоретические кривые распределения






Графически вариационные ряды распределения можно представить в виде полигона распределения (для дискретного ряда) или в виде гистограммы (для интервального ряда), как это показано на рис. 1.2, 1.3.

 


Рис. 1.2. Полигон распределения

 

 
 

 

 


Рис. 1.3. Гистограмма

 

По форме полигона распределения или гистограмме можно сделать вывод о форме распределения. Однако судить о закономерностях данного эмпирического распределения по полигону или гистограмме рискованно, так как оно зависит, в частности, от числа исследуемых единиц.

Характерные черты распределения проявляются при увеличении числа наблюдений.

Предел, в виде сплошной плавной линии, к которому стремится гистограмма, при уменьшении величины интервала или полигон распределения при увеличении числа наблюдений именуется кривой распределения.

Среди различных кривых распределения особое место занимает нормальное распределение.

Нормальное распределение представляет собой симметричную колоколообразную кривую, имеющую максимум в точке, соответствующей , рис. 1.4.

 
 

 


- σ + σ

 

 

Рис. 1.4. Кривая нормального распределения

 

Основными свойствами кривой нормального распределения являются:

1) 68, 3 % всей площади, ограниченной осью х и кривой нормального распределения сосредоточено на участке ;

2) 95, 4 % площади на участке ;

3) 99, 7 % площади на ;

4) Точки перегиба кривой нормального распределения находятся на расстоянии .

На практике эмпирическое распределение может отличаться от нормального, имея асимметрию или эксцесс.

Степень асимметрии оценивается с помощью нормированного момента третьего порядка.

,

где - центральный момент третьего порядка.

.

.

Если R3> 0, 5 независимо от знака, то асимметрия считается существенной. Знак указывает на направленность асимметрии «+» - правосторонняя, «-» левосторонняя.

При соблюдении условия ряд распределения может быть островершинным или низковершинным.

Показатель эксцесса отражает эту особенность.

,

где - центральный момент четвертого порядка.

 

.

 

.

Если Ех> 0, то распределение островершинно, если Ех< 0 –низковершинно.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал