Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Свет — это действительно волна






 

Ученым, который продемонстрировал волновую сущность света, был англичанин Томас Юнг. Человек энциклопедических знаний, он первым совершил прорыв в расшифровке египетских иероглифов на Розеттском камне, а также предположил, что в глазу должны существовать отдельные рецепторы для трех основных цветов — синего, зеленого и красного. Однако главным достижением Юнга было, бесспорно, раскрытие волновой природы света.

У Юнга было серьезное подозрение, что свет скорее похож на волну, чем на поток подобных пулям «корпускул», как то полагал Ньютон. В 1678 году голландский физик Христиан Гюйгенс догадался, что если представить свет как волну, бегущую в пространстве, то можно объяснить многие оптические явления — например, отражение света в зеркале либо изменение направления, или «преломление», луча света в плотной среде, такой, как стекло. Гюйгенсова волновая теория даже предсказала правильное преломление луча света, когда он попадает из воздуха в стеклянный блок, тогда как у теории Ньютона это не очень-то получалось (во всяком случае, требовались некоторые ухищрения). Однако Ньютон имел такую высокую репутацию — в науке он был уже почти богом, — что на теорию Гюйгенса не обратили особого внимания. Пока не появился Юнг.

Какова главная характеристика волнового движения? При наложении разных волн друг на друга они попеременно то усиливаются, то гасятся. Волны усиливаются, когда максимум одной волны совпадает с максимумом другой (это называется «усиливающая интерференция»), и они гасятся, когда максимум одной волны попадает на минимум другой («ослабляющая интерференция»). Эта «интерференция» действует просто гипнотически, если наблюдать за ней в луже, когда идет дождь. Концентрические круги от падающих капель расходятся, пересекаются, проходят друг через друга, и крохотные волны то усиливаются, то сходят на нет.

Юнг знал об этом эффекте. Ему также было известно, что подобное происходит со светом, но эту картину уже не увидишь невооруженным глазом, можно только понять, что гребни световых волн отделены друг от друга куда меньшими расстояниями, чем толщина человеческого волоса — одна из самых малых вещей, доступных человеческому зрению. Сделать интерференцию таких крошечных волн видимой было серьезнейшей задачей, настоящим вызовом природе, и это еще мало сказать. Но Юнг оказался на высоте.

Главное, понял он, — это создать два одинаковых источника концентрических волн, похожих на те, что расходятся от двух дождевых капель, проколовших тонкую поверхностную пленку пруда. Поскольку волны пересекаются, они должны интерферировать. Там, где будет ослабляющая интерференция, возникнет темнота; а в местах усиливающей интерференции возрастет яркость. Темные и светлые участки будут перемежаться. Чтобы увидеть их, достаточно поместить некое подобие белого экрана туда, где концентрические волны станут накладываться друг на друга. Там-то и обнаружится интерференция в виде чередующихся светлых и темных полос, как у зебры (мы бы сказали — как на штрихкоде, что можно увидеть на любом продукте в супермаркете).

Для успеха эксперимента Юнгу было очень важно, чтобы излучаемый свет был одного цвета или, во всяком случае, как можно ближе к одному цвету. Ныне известно, что различным цветам света соответствуют разные размеры волны, или «длины волны». Так, расстояние между гребнями у волны красного света примерно вдвое больше, чем у волны синего. Возможно, Юнг подозревал это. Для демонстрации интерференции требовалось полное усиление и полное ослабление накладывающихся друг на друга волн, а это было возможно только в том случае, если свет был одного цвета.

В 1801 году Юнг создал свои два источника концентрических волн, направив свет с одной стороны на непрозрачный экран с близко расположенными параллельными прорезями. С другой стороны экрана свет выходил из каждой прорези, распространялся дальше и проходил сквозь свет из соседней прорези. Там, где волны должны были наложиться друг на друга, Юнг поместил белый экран. И увидел на нем, к своей нескрываемой радости, чередование светлых и темных полос — верный признак интерференции. Вне всякого сомнения, свет оказался волной. Причина, по которой это не видно невооруженному глазу, заключалась в том, что световые волны слишком малы: всего лишь тысячная доля миллиметра от гребня до гребня [11]. Почему же нам важно знать про этот эксперимент начала XIX века, который продемонстрировал волновую природу света? Да потому, что эксперимент Юнга с двойными прорезями на этом не закончился. Никоим образом. В двадцатом веке он продолжился, но уже в новом воплощении. И вот что поразительно: в наше время этот эксперимент демонстрирует не волновой характер света, а нечто совершенно иное — нечто почти невероятное. Он демонстрирует, что одна, отдельно взятая микроскопическая сущность — фотон или атом — может находиться в двух местах одновременно.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.008 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал